Physics 472 Fall 2011 Problem set # 2 due Friday Sept. 16

- **1. X-ray scattering** Aluminum has the fcc crystal structure. Silicon has the diamond crystal structure [fcc lattice, basis = atoms at + and (a/8)(1,1,1)]. AlP (aluminum phosphide) has the zincblende crystal structure [same as diamond or silicon, except one of the silicon atoms is replaced by Al, and the other by P.] The lattice constants are a = $(4.05\text{\AA}, 5.43\text{\AA}, 5.46\text{\AA})$ for (Al, Si, and AlP) respectively. Consider x-ray diffraction from (111) planes.
- **a**. Sketch the geometry of these planes. Show that they are evenly spaced in Al, but in Si and AlP, there are additional plane spacings of ¼ and ¾ of the primary spacing.
- **b**. What is the primary plane spacing in Al, Si, and AlP? [answer $a/\sqrt{3}$]
- **c**. Suppose your monochromatic x-rays are Mo (K α) with wavelength 0.711 Å. At what angles (2 θ) are the first, second, third, and fourth-order diffraction peaks seen in Al (sketch the geometry.)
- **d**. Explain why the second order diffraction peak is missing in diamond structure. What other peaks in this (111) series are missing?
- **e**. Will the second-order [or (222)] peak be seen in AlP? If so, explain its intensity.

2. Kittel p.44 problem 2

Hexagonal space lattice. The primitive translation vectors of the hexagonal space lattice may be taken as

$$\mathbf{a}_1 = (3^{1/2}a/2)\hat{\mathbf{x}} + (a/2)\hat{\mathbf{y}}$$
; $\mathbf{a}_2 = -(3^{1/2}a/2)\hat{\mathbf{x}} + (a/2)\hat{\mathbf{y}}$; $\mathbf{a}_3 = c\hat{\mathbf{z}}$.

- (a) Show that the volume of the primitive cell is $(3^{1/2}/2)a^2c$.
- (b) Show that the primitive translations of the reciprocal lattice are

$$\mathbf{b}_1 = (2\pi/3^{1/2}a)\hat{\mathbf{x}} + (2\pi/a)\hat{\mathbf{y}} \; ; \qquad \mathbf{b}_2 = -(2\pi/3^{1/2}a)\hat{\mathbf{x}} + (2\pi/a)\hat{\mathbf{y}} \; ; \qquad \mathbf{b}_3 = (2\pi/c)\hat{\mathbf{z}} \; ,$$

so that the lattice is its own reciprocal, but with a rotation of axes.

(c) Describe and sketch the first Brillouin zone of the hexagonal space lattice.

3. Kittel p.44 problem 3

Volume of Brillouin zone. Show that the volume of the first Brillouin zone is $(2\pi)^3/V_c$, where V_c is the volume of a crystal primitive cell. Hint: The volume of a Brillouin zone is equal to the volume of the primitive parallelepiped in Fourier space. Recall the vector identity $(\mathbf{c} \times \mathbf{a}) \times (\mathbf{a} \times \mathbf{b}) = (\mathbf{c} \cdot \mathbf{a} \times \mathbf{b})\mathbf{a}$.

4. Kittel p.44 problem 4

Width of diffraction maximum. We suppose that in a linear crystal there are identical point scattering centers at every lattice point $\rho_m = m\mathbf{a}$, where m is an integer. By analogy with (20), the total scattered radiation amplitude will be proportional to $F = \Sigma \exp[-im\mathbf{a} \cdot \Delta \mathbf{k}]$. The sum over M lattice points is

$$F = \frac{1 - \exp[-iM(\mathbf{a} \cdot \Delta \mathbf{k})]}{1 - \exp[-i(\mathbf{a} \cdot \Delta \mathbf{k})]} ,$$

by the use of the series

$$\sum_{m=0}^{M-1} x^m = \frac{1-x^M}{1-x} \ .$$

(a) The scattered intensity is proportional to $|F|^2$. Show that

$$|F|^2 \equiv F^*F = \frac{\sin^2\frac{1}{2}M(\mathbf{a}\cdot\Delta\mathbf{k})}{\sin^2\frac{1}{2}(\mathbf{a}\cdot\Delta\mathbf{k})} \ .$$

(b) We know that a diffraction maximum appears when $\mathbf{a} \cdot \Delta \mathbf{k} = 2\pi h$, where h is an integer. We change $\Delta \mathbf{k}$ slightly and define ϵ in $\mathbf{a} \cdot \Delta \mathbf{k} = 2\pi h + \epsilon$ such that ϵ gives the position of the first zero in $\sin \frac{1}{2}M(\mathbf{a} \cdot \Delta \mathbf{k})$. Show that $\epsilon = 2\pi/M$, so that the width of the diffraction maximum is proportional to 1/M and can be extremely narrow for macroscopic values of M. The same result holds true for a three-dimensional crystal.