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Motivating example: Particle on a ring

2.1 Classical particle on a ring: Action, Lagrangian, and
Hamiltonian

As a simple motivating example let us consider a particle on a ring. Classi-
cally, the motion can be described by the principle of least action. A classical
action S of a particle can be taken as

S[φ] =
∫

dt L(φ, φ̇), (2.1)

L =
M

2
φ̇2 + Aφ̇ (2.2)

should be minimal (locally) on classical trajectories. Here, the angle φ(t)
is chosen to be a generalized coordinate of the particle on a ring, M is a
moment of inertia of a particle (or mass for a unit ring), A is some constant.

Euler-Langrange equations of motion are given in terms of Lagrangian L
by d

dt
∂L
∂φ̇
− ∂L

∂φ = 0 or explicitly

M φ̈ = 0. (2.3)

Particle given an initial velocity moves with constant angular velocity along
the ring. Notice, that the last term of (2.2) does not affect the motion of
the particle. Indeed, this term is a total time derivative and can not affect
the principle of least action [1].

Given initial position of a particle on a ring at t = t1 and a final position
at t = t2 there are infinitely many solutions of (2.3). They can be labeled
by an integer number of times particle goes around the ring to reach its
final position. This happens because of nontrivial topology of the ring – one
should identify φ = φ + 2π as labeling the same point on the ring. This is
not very important classically as we can safely think of the angle φ taking
all real values from −∞ to +∞. Given initial position φ(t1) = φ1 and initial

5



6 Motivating example: Particle on a ring

velocity φ̇(t1) = ω1 one can unambiguously determine the position of the
particle φ(t) at all future times using (2.3).

Let us now introduce the momentum conjugated to φ as

p =
∂L

∂φ̇
= M φ̇ + A (2.4)

and the Hamiltonian as

H = pφ̇− L =
1

2M
(p−A)2. (2.5)

Corresponding Hamilton equations of motion

φ̇ =
1
M

(p−A), (2.6)

ṗ = 0 (2.7)

are equivalent to (2.3).
Notice that although the parameter A explicitly enters Hamiltonian for-

malism it only changes the definition of generalized momentum M φ̇ + A
instead of more conventional M φ̇. It does not change the solution of equa-
tions of motion and can be removed by a simple canonical transformation
p → p + A. We will see below that this changes for a quantum particle.

2.2 Quantum particle on a ring: Hamiltonian and spectrum
Let us now consider a quantum particle on a ring. We replace classical
Poisson’s bracket {p, φ} = 1 by quantum commutator [p, φ] = −i! and use
φ-representation, i.e., we describe our states by wave functions on a ring
ψ(φ). In the following we will put ! = 1. In this representation we can use
p = −i∂φ and rewrite (2.5) as a quantum Hamiltonian

H =
1

2M
(−i∂φ −A)2 . (2.8)

The eigenstates and eigenvalues of this Hamiltonian are given by solutions
of stationary Schrödinger equation Hψ = Eψ. We impose periodic boundary
conditions requiring ψ(φ+2π) = ψ(φ), i.e., the wave function is required to
be a single-valued function on the ring. The eigenfunctions and eigenvalues
of (2.8) are given by

ψm = eimφ, (2.9)

Em =
1

2M
(m−A)2, (2.10)

where m = 0,±1,±2, . . . is any integer number - the quantized eigenvalue
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Fig. 2.1. The spectrum of the particle on a ring is shown for 2πA = θ = 0, π,π/2
respectively. The classical energy E(p) is represented by a parabola and does not
depend on the parameter A.

of the momentum operator p = −i∂φ. We notice that although classical
model is not sensitive to the parameter A the quantum one is because of
the quantization of p. The parameter A can be interpreted as a vector
potential of the magnetic flux penetrating the ring. This vector potential
is not observable in classical mechanics but affects the quantum spectrum
because of multiple-connectedness of the ring (there are many non-equivalent
ways to propagate from the point 1 to the point 2 on a ring). More precisely
our parameter A should be identified with the vector potential multiplied by
e
!c . It corresponds to the magnetic flux through the ring Φ = AΦ0, where
Φ0 is a flux quantum Φ0 = 2π !c

e .
The A-term of the classical action – topological term – can be written as

Stop =
∫ t2

t1

dt Aφ̇ = 2πA
φ2 − φ1

2π
= θ

∆φ

2π
. (2.11)

It depends only on the initial and final values φ1,2 = φ(t1,2) and changes by
θ = 2πA every time particle goes a full circle around the ring in counter-
clockwise direction. The conventional notation θ for a coefficient in front of
this term gave the name topological theta-term for these type of topological
terms.

The spectrum (2.10) is shown in Figure 2.1 for three values of flux through
the ring θ = 0, π,π/2 (A = Φ/Φ0 = 0, 1, 1/2).

Several comments are in order. (i) an integer flux A-integer or θ - multiple
of 2π does not affect the spectrum. (ii) There is an additional symmetry
(parity) of the spectrum at θ multiple of π (integer or half-integer flux). (iii)
For half-integer flux θ = π the ground state is doubly degenerate E0 = E1.

Finally, let us try to remove the A term by canonical transformation as
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in classical case. We make a gauge transformation ψ → eiAφψ and obtain
p → p + A and H = 1

2M (−i∂φ)2. One might think that we removed the
effects of the A term completely. However, this transformation changes the
boundary conditions of the problem replacing them by twisted boundary
conditions ψ(φ + 2π) = e−i2πAψ(φ). The eigenfunctions satisfying twisted
boundary conditions are ψm = ei(m−A)φ and produce the same eigenvalues
(2.10). We conclude that it is not possible to remove the effects of topological
A-term in quantum mechanics. The parameter A can be formally removed
from the Hamiltonian by absorbing it into the boundary conditions. This,
however, does not change the spectrum and other physical properties of the
system.

2.3 Quantum particle on a ring: path integral and Wick’s
rotation

A quantum mechanics of a particle on a ring described by the classical action
(2.2) can be represented by path integral

Z =
∫

Dφ eiS[φ], (2.12)

where integration is taken over all possible trajectories φ(t) (with proper
boundary values). In this approach the contribution of the topological term
to the weight in the path integral is the phase eiθ∆φ/(2π) which is picked up
by a particle moving in the presence of the vector potential.

Let us perform Wick’s rotation replacing the time by an imaginary time
τ = it. Then

∫
dt

M φ̇2

2
→ i

∫
dτ

M φ̇2

2
, (2.13)

∫
dt Aφ̇ →

∫
dτ Aφ̇, (2.14)

where in the r.h.s dot means the derivative with respect to τ . The path
integral (2.12) is then replaced by a Euclidian path integral

Z =
∫

ei[φ(T )−φ(0)]=1
Dφ e−S[φ], (2.15)

where the action

S =
∫ β

0
dτ

[
M

2
φ̇2 − iAφ̇

]
. (2.16)

We considered the amplitude of the return to the initial point in time β,
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i.e. 0 < τ < β. This requires periodic boundary conditions in time eiφ(0) =
eiφ(β).

We notice here that because the A-term is linear in time derivative it
does not change its form under Wick’s rotation (2.14) and therefore, is still
imaginary in Euclidian formulation (2.16). Without imaginary term one can
think about e−S as of Boltzmann weight in the classical partition function.

One can satisfy the boundary conditions as φ(β)− φ(0) = 2πQ with any
integer Q. We can rewrite the partition function (2.15) as:

Z =
+∞∑

Q=−∞
eiθQ

∫

φ(β)−φ(0)=2πQ
Dφ e−

R β
0 dτ M

2 φ̇2
. (2.17)

We notice here that θ = 2πn – multiple of 2π – is equivalent to θ = 0. Second
we notice that the partition function is split into the sum of path integrals
over distinct topological sectors characterized by an integer number Q which
is called the winding number. The contributions of topological sectors to the
total partition function are weighed with the complex weights eiθQ.

For future comparisons let us write (2.16) in terms of a unit two-component
vector )∆ = (∆1,∆2) = (cos φ, sinφ), )∆2 = 1.

S =
∫ β

0
dτ

[
M

2
)̇∆

2
− iA(∆1∆̇2 −∆2∆̇1)

]
. (2.18)

This is the simplest (0 + 1)-dimensional O(2) non-linear σ-model.

2.4 Quantum doublet
Let us consider a particular limit of a very light particle on a circle M → 0
in the presence of half of the flux quantum A = 1/2, θ = π. With this flux
the ground state of the system is doubly degenerate E0 = E1 and the rest
of the spectrum is separated by the energies ∼ 1/M →∞ from the ground
state (2.10). At large β (low temperatures) we can neglect contributions of
all states except for the ground state.

We write the general form of the ground state wave function as α|+1/2〉+
β| − 1/2〉, where | + 1/2〉 = ψ0 and | − 1/2〉 = ψ1. The ground state space
(α,β) coincides with the one for a spin 1/2. One might say that (2.15-2.16)
with M → 0 realize a path integral representation for the quantum spin
1/2. This representation does not have an explicit SU(2) symmetry. We
will consider an SU(2)-symmetric path integral representation for quantum
spins later.

Meanwhile, let us discuss some topological aspects of a plane rotator prob-
lem.
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2.5 Full derivative term and topology

From a mathematical point of view the motion of a particle on the unit
circle with periodic boundary conditions in time is described by a mapping
φ(t) : S1

t → S1
φ of a circle formed by compactified time S1

τ = t ∈ [0, β]
into a circle S1

φ = φ ∈ [0, 2π]. This mapping can be characterized by integer
winding number Q which tells us how many times the image φ goes around
target space S1

φ when variable τ changes from 0 to β.
It can be shown that two such mappings φ1(τ) and φ2(τ) can be continu-

ously deformed one into another if and only if they are characterized by the
same winding number. Therefore, all mappings are divided into topological
classes enumerated by Q = 0,±1,±2, . . .. Moreover, one can define a group
structure on topological classes. First we define the product of two mappings
φ1 and φ2 as

φ2 · φ1(τ) =
{

φ1(2t), for 0 < τ < β/2
φ1(β) + φ2(2τ − β), for β/2 < τ < β.

If φ1 belongs to the topological class Q1 and φ2 to Q2, their product belongs
to the class Q1 + Q2. One can say that the product operation on mappings
induces the structure of Abelian group on the set of topological classes. In
this case this group is the group of integer numbers with respect to addition.
One can write this fact down symbolically as π1(S1) = Z, where subscript
one denotes that our time is S1 and S1 in the argument is our target space.
One says that the first (or fundamental) homotopy group of S1 is the group
of integers.

There is a simple formula giving the topological class Q ∈ Z in terms of
φ(τ)

Q =
∫ β

0

dτ

2π
φ̇. (2.19)

Let us now assume that we splitted our partition function into the sum
over different topological classes. What are the general restrictions on the
possible complex weights which one can introduce in the physical problem.
One can deform smoothly any mapping in the class Q1 + Q2 into two map-
pings of classes Q1 and Q2 which are separated by a long time. Because of
the multiplicative property of amplitudes this means that the weights WQ

associated with topological classes must form a (unitary) representation of
the fundamental group of a target space. The only unitary representation of
Z is given by WQ = eiθQ with 0 < θ < 2π labelling different representations.
In the case of plane rotator these weights correspond to the magnetic flux
piercing the one-dimensional ring.
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In more general case of, say, particle moving on the manifold G (instead
of S1) we have to consider the fundamental group of our target space π1(G),
find its unitary representations, and obtain complex weights which could be
associated with different topological classes.

2.6 Topological terms and quantum interference

As it can be seen from (2.17) the presence of a topological term in the
action (θ '= 0) results in the interference between topological sectors in the
partition function. The Boltzmann weight calculated for a trajectory within
a given topological sector Q is additionally weighted with complex phase
eiθQ. This interference can not be removed by Wick’s rotation.

2.7 General definition of topological terms

We define generally topological terms as the metric-independent terms in
the action.

A universal object present in any field theory, is the symmetric stress-
energy tensor Tµν . It can be defined as a variation of the action with respect
to the metric gµν . More precisely, an infinitesimal variation of the action
can be written as

δS =
∫

dx
√

g Tµνδg
µν , (2.20)

where √g dx is an invariant volume of space-time.
It immediately follows from our definition of topological terms that topo-

logical terms do not contribute to the stress-energy tensor. If in a field
theory all terms are topological we have Tµν = 0 for such a theory. These
theories are called topological field theories.

A particular general covariant transformation is the rescaling of time.
Topological terms do not depend on a time scale. Therefore, the corre-
sponding Lagrangians are linear in time derivatives. They do not transform
under Wick’s rotation and are always imaginary in Euclidian formulation.
They describe quantum interference which is not removable by Wick rota-
tion.

2.8 Theta terms and their effects on the quantum problem

Theta terms are topological terms of particular type. They appear when
there exist nontrivial topological textures in space-time. Essentially, these
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terms are just complex weights of different topological sectors in the path
integration. We will go over more details on θ-terms later in the course.

In addition to being imaginary in Euclidian formulation as all other topo-
logical terms θ-terms have also some special properties. These properties
distinguish them from other types of topological terms. The following is a
partial list of the features of topological θ-terms and of their manifestations.

• Textures in space-time (integer topological charge Q)
• Realize irreducible 1d-representations of πD(G), where D is the dimension

of space-time and G is a target space
• Quantum interference between topological sectors
• Do not affect equations of motion
• Affect the spectrum of quantum problem by changing quantization rules
• Periodicity in coupling constant θ

• θ is not quantized (for Q ∈ Z)
• θ = 0, π an additional (parity) symmetry
• θ = π – degeneracy of the spectrum. Gapless excitations.
• Equivalent to changes in boundary conditions.
• θ is a new parameter which appears from the ambiguity of quantization

of the classical problem for multiply-connected configurational space.

2.9 Exercises

Exercise 2.1: Particle on a ring, path integral The Euclidian path
integral for a particle on a ring with magnetic flux through the ring is given by

Z =
∫

Dφ e
−

R β
0 dτ

“
mφ̇2

2 −i θ
2π φ̇

”

.

Using the decomposition

φ(τ) =
2π

β
Qτ +

∑

l∈Z

φle
i 2π

β lτ

rewrite the partition function as a sum over topological sectors labeled by winding
number Q ∈ Z and calculate it explicitly. Find the energy spectrum from the ob-
tained expression.

Hint : Use summation formula
+∞∑

n=−∞
e−

1
2 An2+iBn =

√
2π

A

+∞∑

l=−∞
e−

1
2A (B−2πl)2 .
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Exercise 2.2: spin 1/2 from a particle on a ring Calculate the partition
function of a particle on a ring described in the previous exercise. Find explicit
expressions in the limit M → 0, θ → π but θ − π ∼ M/β. One can interpret
the obtained partition function as a partition function of a spin 1/2. What is the
physical meaning of the ratio (θ−π)/M in the spin 1/2 interpretation of the result?

Exercise 2.3: Metric independence of the topological term The
classical action for a particle on a ring is given by

S =
∫

dtp

(
mφ̇2

2
− θ

2π
φ̇

)
,

where tp is some “proper” time. Reparametrizing time as tp = f(t) we have dt0 =
f ′dt and dt20 = f ′2dt2 and identify the metric as g00 = f ′2 and g00 = f ′−2. We also
have √g00 = f ′. Rewrite the action in terms of φ(t) instead of φ(tp). Check that it
has a proper form if written in terms of the introduced metric. Using the general
formula for variation of the action with respect to a metric (g = det gµν)

δS =
∫

dx
√

g Tµνδgµν ,

find the stress-energy tensor for the particle on the ring. Check that T00 is, indeed,
the energy of the particle.


