
Phy131 Spring 2006. Practice problems from Ch. 19 & 20 – I didn’t have time to 
explain these enough in lecture. 

 
a) Adiabatic compression of an ideal gas says that p0L0

γ=pLγ where the volume V is 
proportional to the length L of the cylindrical chamber whose length is L0 when 
the piston is all the way out, and 0 when the piston is all the way in.  The constant 
γ=1.4 for a diatomic gas like air.  The value of L is found by choosing p to be 
(4.20 + 1.01)  x 105 Pa, and p0 to be one atmosphere, 1.01 x 105 Pa.  The result is 
that L/L0 = (p0/p)1/γ= 0.309, or the piston starts pushing air out of the pump into 
the tank when the piston has been pushed by L0-L = 0.173 m. 

b) At this pressure, the temperature can be found from T0L0
γ-1=TLγ-1.  Remember that 

T and T0 are in absolute units, so T0 = 273 + 27 K = 300K.  Then T=T0(L0/L)0.4 = 
480 K = 207 oC.   

c) The work Wad needed to compress adiabatically is UΔ− since WQU −=Δ  and 
Q=0 in an adiabatic process.  For an ideal gas, TnCU vΔ=Δ and Cv=(5/2)R for a 
diatomic gas. This gives W = 7.5 x 104 J.  An alternate calculation uses eq. 19.26 
which is )1/()()1/()( 212211 −−=−−= γγ TTnRVpVpW and gives the same answer.  
There is additional work pushing the gas into the tank at the constant pressure p of 
the tank.  This work is just pV where V is the total volume pushed in at pressure p.  
Therefore we can use instead nRT, where T is the absolute temperature, 480K.  
The result is an additional 8.0 x 104 J. 

 
 
 



 
Denote the temperature at point 1 by T0 (that is p0V0=nRT0).  Then the temperatures at 
points 2 and 4 are 2T0 and at point 3 it is 4T0.  A Carnot engine operating between T0 and 
4T0 has efficiency e=1-|Qc/Qh| = 1-1/4 = ¾.  This engine must be less efficient, and in 
fact, is much less, with e = 2/19.  The proof is as follows.  The general definition of 
efficiency is e = W/Qin, the ratio of work (area of the loop, p0V0 in this case) to the heat 
that enters in steps 1  2 and 2  3 (heat leaves in the other two steps.)  At constant 
volume, Q12=nCvΔT and at constant pressure, Q23=nCpΔT.  Thus we have 
Qin=n((5/2)R(T0)+(7/2)R(2T0)), using the formulas for a diatomic gas, and the values of 
ΔT  for the two processes.  An alternate method to find Q12+Q23 is to use Q=ΔU + W 
where ΔU is the total energy change going from 1 to 3, which is just nCv(3T0), and where 
W is the work done in step 2  3, namely 2p0V0.  Both methods give Q = (19/2)p0V0. 
 

 
 
Entropy (S) is found using the primary facts (1) that entropy depends only on the 
equilibrium state that the system is in, not the path by which it got there, and (2) that in a 
reversible isothermal process at temperature T, with heat input QΔ , TQS /Δ=Δ .  When 
2 kg of water at 80oC mixes with 1 kg at 20oC,  the 2 kg part cools from Th = 273+80K to 
Tf = 273+60K, while the 1 kg part heats from Tc = 273 + 20K to Tf = 273 + 60 K.   The 
process of cooling involves decreasing entropy, and the process of heating involves 
increasing entropy.  The net entropy change must be positive (for most, irreversible, 
process, like this mixing process) or zero (for a reversible process), never negative. 
 
The processes which actually happen in nature are irreversible.  However, the SΔ values 
can be computed for an equilibrium process which connects the same initial and final 
states.  So we imagine a sequence of additions or subtractions of heat, each happening at 
approximately a constant temperature Ti, with Ti changing slowly until we reach the final 
temperature.  Thus we have ii TQS /Δ=Δ ∑  which becomes the integral 

∫∫ ===Δ )/ln(/ if TTnCdT
T
nCTdQS , where Ti and Tf are initial and final 

temperatures, and C is CV or Cp for constant volume or constant pressure processes.  In 
our case, the medium is liquid water, which does not have a large thermal expansion, so 
CV and Cp are practically the same.  Adding the entropy changes for the heating and the 
cooling, we have )353/333ln()2()293/333ln()1( ckgckgS +=Δ , using mc in place of nC.  
This gives ΔS = (4190J/K)(0.12797-0.11665)=47.4 J/K, a positive number, as always 
happens when heat flows from hot to cold irreversibly. 


