Physics 131 Spring 2006. Formulas you should memorize for Midterm #2 (of course, you must also know the formulas for Midterm #1.)

<table>
<thead>
<tr>
<th>Angular Kinematics</th>
<th>(\theta \equiv s(=\text{arc length})/R = \theta(t)) (angular position)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rotation angle (\theta) (radians; rotation radius (R)):</td>
<td>(\omega \equiv v/\tan R; \ \alpha \equiv a/\tan \) \tan = \text{tangential}</td>
</tr>
<tr>
<td>angular velocity (\omega); angular acceleration (\alpha)</td>
<td>(\omega = \omega_0 + \alpha t; \ \theta = \theta_0 + \omega t + \frac{1}{2} \alpha t^2)</td>
</tr>
<tr>
<td>Circular motion (radius (R)) with constant (\alpha):</td>
<td>eliminating (t): (\omega = \omega_0 + 2\alpha(\theta - \theta_0))</td>
</tr>
<tr>
<td>circular motion – radial acceleration (a_{\text{rad}}):</td>
<td>(a_{\text{rad}} = a = v^2/T) (radially inwards)</td>
</tr>
<tr>
<td>Center-of-Mass position of system (mass (M))</td>
<td>(r_{\text{cm}} \equiv \sum m_i r_i / \sum m_i = \sum m_i r_i / M)</td>
</tr>
<tr>
<td>Moment of Inertia (I):</td>
<td>(I = \sum m_i r_i^2 = \int r^2 dm; r_i(r) = \text{distance between rotation axis and } m_i(dm))</td>
</tr>
<tr>
<td>I for thin hollow cylinder, about the central symmetry axis</td>
<td>(I = MR^2) More complicated formulas in table 9.2 do NOT need to be memorized. They will be given if needed.</td>
</tr>
<tr>
<td>Parallel-Axis Theorem</td>
<td>(I = I_{/i,\text{cm}} + Md^2) ((d=\text{distance between the parallel axes}))</td>
</tr>
<tr>
<td>Momentum (p)</td>
<td>(p \equiv \sum m_i v_i = Mv_{\text{cm}})</td>
</tr>
<tr>
<td>Angular Momentum (L)</td>
<td>(L = \sum R_i \times m_i v_i) (= (I_0 \omega) for a rigid body rotating around the axis used when computing (I))</td>
</tr>
<tr>
<td>Kinetic Energy (K) ([\text{J} \equiv \text{Nm}]):</td>
<td>Moving axis: (K_{\text{tot}} \equiv \frac{1}{2} m v_{\text{cm}}^2 + \frac{1}{2} I_{\text{cm}} \omega_{\text{cm}}^2)</td>
</tr>
<tr>
<td>Fixed axis A: (K_{\text{rot,A}} \equiv \frac{1}{2} I_{\text{A}} \omega_{\text{A}}^2)</td>
<td></td>
</tr>
<tr>
<td>Forces ([\text{N} \equiv \text{kgm/s}^2])</td>
<td>(\sum F_i = ma = dp/dt; \ F_{A \text{on } B} = -F_{B \text{on } A}; \ \sum \tau = dL/dt = l\alpha)</td>
</tr>
<tr>
<td>Torques ([\text{Nm or J}]) and consequences:</td>
<td>In PHY131, rotations will always be in a fixed plane. The vectors (\tau, \ \omega,) etc. will therefore have a fixed direction perpendicular to the plane, and you do not need to worry about direction, just sign. Conventionally, counterclockwise is positive, but you may specify your own convention.</td>
</tr>
<tr>
<td>Force of Gravity between M and m, at center-to-center distance r</td>
<td>$F_G = \frac{GMm}{r^2}$ (attractive! $G=6.67\times10^{-11}$ Nm2/kg2); near sea level: $F_G = mg(-j)$ (downwards; $g=9.80$ m/s2). Memorize 9.80, but not the numerical value 6.67×10^{-11} Nm2/kg2</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Force of a Spring (spring constant k):</td>
<td>$F_S = -kx$ (opposes compression/stretch)</td>
</tr>
<tr>
<td>Torque:</td>
<td>$\tau \equiv \mathbf{R} \times \mathbf{F}$ ($\tau = RF\sin\theta_{RF}$; direction: right-hand rule)</td>
</tr>
<tr>
<td>Equilibrium & Collisions:</td>
<td>$\Sigma F_i = \frac{dp_{\text{tot}}}{dt} = 0$ and $\Sigma \tau_i = \frac{dL_{\text{tot}}}{dt} = 0 \Rightarrow \Delta p_{\text{tot}} = \Delta L_{\text{tot}} = 0$ Elastic: K is conserved; Completely Inelastic: objects stick together afterwards</td>
</tr>
<tr>
<td>Work done by a torque τ_F over a rotation by angle θ:</td>
<td>$W_F \equiv \int \tau_F \cdot d\theta$</td>
</tr>
<tr>
<td>Power P [W≡J/s]:</td>
<td>$P_F \equiv dW_F/dt = \mathbf{F} \cdot \mathbf{v}$ or $\tau_F \cdot \omega$</td>
</tr>
<tr>
<td>Potential Energy U of conservative forces F</td>
<td>$U_F = -W_F$; e.g. $U_G = -\frac{GMm}{r}$, U_G (near earth)$=mgy$; $U_s = \frac{1}{2}kx^2$</td>
</tr>
<tr>
<td>Harmonic oscillator</td>
<td>$m\frac{d^2x}{dt^2} = -kx - b\frac{dx}{dt}$ The “circle of reference” is a picture where the oscillator displacement x is horizontal, while $-v/\omega$ is vertical. The oscillator is then “visualized” as a point on a circle of radius A, whose angular motion $\theta(t)$ is given by $\theta=\omega t+\phi$, and $x(t)=A\cos\theta$.</td>
</tr>
<tr>
<td></td>
<td>$x(t) = A\cos(\omega t + \phi)$ where $\omega = \sqrt{k/m}$ if the damping coefficient $b=0$. $\omega = 2\pi f=2\pi/T$. $A = \sqrt{x_0^2+(v_0/\omega)^2}$; $\phi = -\tan^{-1}(v_0/\omega x_0)$ when $b \neq 0$ the oscillations die exponentially as $e^{-\gamma t}$ where you do not need to memorize formulas like $\gamma = b/2m$ or the formula for the shifted resonant frequency.</td>
</tr>
<tr>
<td>Pendulum</td>
<td>$I \frac{d^2\theta}{dt^2} = -MgL_{\text{cm}}\sin \theta = -MgL_{\text{cm}}\theta$ The small angle approximation is used in the second formula.</td>
</tr>
<tr>
<td></td>
<td>$\theta(t) = \Theta \cos(\omega t + \phi)$ where $\omega = \sqrt{MgL_{\text{cm}}/I}$ for the general pendulum, which becomes $\omega = \sqrt{g/L}$ for the simple pendulum. These results depend on the angular amplitude Θ being small.</td>
</tr>
</tbody>
</table>