Physics 131 Spring 2006. Formulas you should memorize for Midterm #2 (of course, you must also know the formulas for Midterm #1.)

Angular Kinematics	$\theta = s(=\text{arc length})/R = \theta(t) \text{ (angular position)}$
rotation angle θ (radians; rotation	
radius R):	
angular velocity ω; angular	$\omega \equiv v_{tan}/R$; $\alpha \equiv a_{tan}/R$ (tan = tangential)
acceleration α	tan tan tun
Circular motion (radius <i>R</i>) with	$\theta = \theta + \alpha t$: $\theta = \theta + \theta t + \frac{1}{2}\alpha t$
constant α:	
	$\omega = \omega_0 + \alpha t; \theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2;$ eliminating t : $\omega^2 = \omega_0^2 + 2\alpha(\theta - \theta_0)$
circular motion – radial acceleration	$a_{\text{rad}} = a_c = v_{\text{T}}^2 / R$ (radially inwards)
a:	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Center-of-Mass position of system	$\mathbf{r}_{cm} \equiv \sum_{i} m_{i} \mathbf{r} / \sum_{i} m_{i} = \sum_{i} m_{i} \mathbf{r} / M$
$(\max M)$	cm i i i i i i i
Moment of Inertia <i>I</i> :	$I \equiv \sum m_i r_i^2 = \int r^2 dm$; $r_i(r) = \text{distance between}$
	rotation axis and $m_i(dm)$
I for thin hollow cylinder, about the	$I = MR^2$ More complicated formulas in table 9.2
central symmetry axis	do NOT need to be memorized. They will be
	given if needed.
Parallel-Axis Theorem	$I = I_{//,cm} + Md^2$ (d=distance between the parallel
Management	axes)
Momentum p	$\mathbf{p} \equiv \sum_{i} m_{i} \mathbf{v}_{i} = M \mathbf{v}_{cm}$
Angular Momentum L	$\mathbf{L} \equiv \sum_{i} \mathbf{R}_{i} \times m_{i} \mathbf{v}_{i} (= I \boldsymbol{\omega} \text{ for a rigid body rotating})$
	around the axis used when computing I)
Kinetic Energy K [J \equiv Nm]:	Moving axis: $K_{\text{tot}} = \frac{1}{2} m v_{\text{cm}} + \frac{1}{2} I_{\text{cm}} \omega_{\text{cm}}$
	Fixed axis A: $K_{\text{rot,A}} \equiv \frac{1}{2} I_A \omega_A$
Forces [N=kgm/s ²]	$\sum_{i} \mathbf{F}_{i} = m\mathbf{a} = d\mathbf{p}/dt \; ; \; \mathbf{F}_{A \text{ on } B} = -\mathbf{F}_{B \text{ on } A} \; ; \; \sum_{i} \mathbf{\tau}_{i} = d\mathbf{L}/dt$
Torques [Nm or J]	$=I\alpha$
and consequences:	In PHY131, rotations will always be in a fixed
_	plane. The vectors $\boldsymbol{\tau}$, $\boldsymbol{\omega}$, etc. will therefore
	have a fixed direction perpendicular to the
	plane, and you do not need to worry about
	direction, just sign . Conventionally,
	counterclockwise is positive, but you may
	specify your own convention.

Force of Gravity between <i>M</i> and <i>m</i> , at center-to-center distance <i>r</i> Force of a Spring (spring constant <i>k</i>):	$\mathbf{F}_{G} = GMm/r^{2}$ (attractive! $G=6.67\times10^{-11}$ Nm /kg); near sea level: $\mathbf{F}_{G} = mg(-\mathbf{j})$ (downwards; $g=9.80$ m/s). Memorize 9.80, but not the numerical value 6.67×10^{-11} Nm /kg $\mathbf{F}_{S} = -k\mathbf{x}$ (opposes compression/stretch \mathbf{x})
Torque:	$\tau \equiv \mathbf{R} \times \mathbf{F} \ (\tau = RF \sin \theta_{\mathbf{R}, \mathbf{F}}; \text{ direction: right-hand}$
	rule)
Equilibrium & Collisions:	$\sum_{i} \mathbf{F}_{i} = d\mathbf{p}_{\text{tot}} / dt = 0 \text{ and } \Sigma \mathbf{\tau}_{i} = d\mathbf{L}_{\text{tot}} / dt = 0 \Rightarrow \Delta \mathbf{p}_{\text{tot}}$ $= \Delta \mathbf{L}_{\text{tot}} = 0 \text{ Elastic: } K \text{ is conserved; } Completely$ $Inelastic: \text{ objects stick together afterwards}$
Work done by a torque $\tau_{_{\rm E}}$ over a	$W_{\mathbf{F}} \equiv \int \mathbf{\tau}_{\mathbf{F}} \cdot d\mathbf{\theta}$
rotation by angle θ :	F F
Power $P[W\equiv J/s]$:	$P_{\rm F} \equiv dW_{\rm F}/dt = \text{F-v or } \tau_{\rm F} \cdot \omega$
Potential Energy <i>U</i> of conservative	$P_{\mathbf{F}} = dW_{\mathbf{F}}/dt = \mathbf{F \cdot v} \mathbf{or} \boldsymbol{\tau}_{\mathbf{F}} \cdot \boldsymbol{\omega}$ $U_{F} = -W_{F}; \text{ e.g. } U_{G} = -GMm/r, U_{G} \text{ (near)}$
forces F	earth) = mgy;
	$U_{s} = \frac{1}{2}kx^{2}$
Harmonic oscillator $m\frac{d^2x}{dt^2} = -kx - b\frac{dx}{dt}$ The "circle of reference" is a picture where the oscillator displacement x is horizontal, while $-v/\omega$ is vertical. The oscillator is then "visualized" as a point on a circle of radius A, whose angular motion $\theta(t)$ is given by $\theta = \omega t + \varphi$, and $x(t) = A\cos\theta$.	$x(t) = A \cos(\omega t + \varphi)$ where $\omega = \sqrt{k/m}$ if the damping coefficient $b = 0$. $\omega = 2\pi f = 2\pi/T$. $A = \sqrt{x_0^2 + (v_0/\omega)^2}$; $\phi = -\tan^{-1}(v_0/\omega x_0)$ when $b \neq 0$ the oscillations die exponentially as $e^{-\pi}$ where you do not need to memorize formulas like $\gamma = b/2m$ or the formula for the shifted resonant frequency.
Pendulum	$\theta(t) = \Theta \cos(\omega t + \varphi)$ where $\omega = \sqrt{MgL_{CM}/I}$ for the
$I\frac{d^2\theta}{dt^2} = -MgL_{CM}\sin\theta \approx -MgL_{CM}\theta$ The small angle approximation is used in the second formula.	general pendulum, which becomes $\omega = \sqrt{g/L}$ for the simple pendulum. These results depend on the angular amplitude Θ being small.