Wave velocity

v – string tension is F

$$v = \sqrt{\frac{F}{\mu}} \quad (\mu \text{ is mass/length})$$

Wave length

λ, wave-vector k

$$k = \frac{2\pi}{\lambda}$$

Frequency, angular frequency, period

$\omega = 2\pi f = \frac{2\pi}{T}$ and $v = \lambda f$

Standing wave – separate factors for x and t

$$y(x, t) = A \sin(kx) \sin(\omega t)$$

Traveling wave – sign determines direction

$$y(x, t) = A \sin(kx \pm \omega t)$$ - for left, + for right

Normal modes – string fixed at both ends $(0, L)$

$$\lambda_n = \frac{2L}{n} \quad n^{th} \text{ harmonic has } n-1 \text{ nodes}$$

Fluids – buoyant force – density ρ

$$F_B = W = W \text{ (weight of displaced fluid)} = \rho V$$

Pressure vs depth – if y increases

Upward, then $p = \rho g y$

Bernoulli equation – fluid in laminar flow

$$p + \rho g y + \frac{1}{2} \rho v^2 \text{ constant}$$

Work

$$W = \int pdV$$

Heat, work, energy

W = work done by system

$$\Delta U = Q - W \quad 1^{st} \text{ Law} \quad Q = \text{ heat added to system}$$

Specific heat capacity $Q = mc\Delta T$

c in joules/kg degree K or C

Molar heat capacity $Q = nC_A T$

C in Joules/mole degree K or C

Heat at constant p

$p = \text{ heat at constant } V + W$

Ideal gas law $pV = nRT = Nk_BT$

T in Kelvin = T in Celsius + 273.15

Water:

$$\rho = 10^3 \text{ kg/m}^3 \quad T_{\text{freeze}} = 0^\circ\text{C} = 273.15\text{K}$$

$$T_{\text{boil}} = 100^\circ\text{C} = 373.15\text{K}$$

Rate of radiative heat transfer

$H = dQ/dt = e\sigma A(T_1^4 - T_2^4)$ (in W/m2K4)

Thermal expansion

$$\Delta L = \alpha L_0 \Delta T \quad \Delta V = \beta V_0 \Delta T$$

Molecular model of gas

$$\overline{KE}_{\text{trans}} = \frac{3}{2} Nk_b T$$

Diatomic molecules also have rotational KE

$$\overline{KE}_{\text{trans}} + \overline{KE}_{\text{rot}} = \frac{5}{2} Nk_b T$$ (neglect vibrational)

Molar specific heat

$$C_V = \frac{5}{2} Nk_b = \frac{5}{2} nR$$ (diatomic as in O$_2$, N$_2$) $\gamma = C_p/C_v = 7/5$

Adiabatic process means no heat.

Ideal gas pV^γ is constant

Second ideal gas law: $\Delta U = nC_V \Delta T$

Cyclic process W = area in $p-V$ plane $= Q_{in} - Q_{out}$

Efficiency of heat engine $e = W/Q_{in} = 1 - Q_{out}/Q_{in}$

Carnot cycle – heat in at T_h, heat out at T_c

No heat (adiabats) in between

2nd Law

All heat engines reject heat Q_c

Or heat never flows from T_c to T_h

Or no heat engine is more efficient than Carnot

Carnot efficiency $= 1 - Q_c/Q_h = 1 - T_c/T_h$

Or entropy S depends on state, not path

$$dS = dQ/T \quad S = \int dQ/T$$ (reversible process)