1. In class, we did a “microscopic” mean field theory, starting with the Heisenberg Hamiltonian $H = -J \sum \vec{\sigma}_i \cdot \vec{\sigma}_j$, where the sum is over all nearest neighbor pairs (each pair counted once). The result is a mean field formula for the temperature dependence of the “order parameter” $\langle M \rangle$, or its dimensionless form $m = M/M_0$, where $M_0 = n \mu_B$ and n is the density of spins. The formula is $m = \tanh(m/t)$, where $t = T/T_C$, and $T_C = zJ/k_B$, with z the number of first neighbors.

(a) By solving $m = \tanh(m/t)$ graphically for $m(t)$ at a few values of t, make a graph that shows all the roots for $t > 0$.

(b) Using the fact that Fe (iron) has the bcc structure and has Curie temperature $T_C = 1043K$, what value of exchange constant J is expected in the mean field theory? Do the same for CrO$_2$ (rutile structure, $T_C = 386K$).

2. Kittel problem 8, p. 320 Paramagnetism of S=1 system. From the clue "paramagnetism" you should deduce that this problem is about non-interacting spins. These spins occur on objects whose dynamics is irrelevant to the magnetization – such as oxygen atoms in vapor.

(a) Find the magnetization as a function of magnetic field H and temperature T for a system of N spins in volume V, with $S = 1$ (quantized with $S_z = 1,0,-1$). Their moment is μ, and concentration $n = N/V$.

(b) In the limit $\mu H << k_B T$, obtain the constant C of the Curie law $\chi = C/T$.

3. The magnetic instability of the interacting electron gas. “Interacting” means that electrons feel each other via the repulsive $1/r$ Coulomb potential. Overall charge neutrality is achieved by a rigid compensating background charge. As discussed in class, the Hartree-Fock equations have a self-consistent solution when the occupied Hartree-Fock orbitals are plane waves $\psi = \exp(ik \cdot \vec{r})/\sqrt{V}$, V being the volume of the sample. It was not done in class, but this solution still works if the number of occupied spin-up states differs from the number of occupied spin-down states. The self-consistent computation of the energies is done in a parallel way. This permits a net ferromagnetic spin density $m = n_\uparrow - n_\downarrow$, where the density of electrons $n = N/V$ is separated into unequal up and down densities, with $n = n_\uparrow + n_\downarrow$. It then needs to be examined whether the polarized solution or the unpolarized solution has lower energy. The total energy equals $E_{\text{tot}} = E_k + E_x$, where the separate kinetic and exchange terms are

$$E_k = \sum_k^{\text{spins \uparrow occupied}} \frac{\hbar^2 k^2}{2m} + \sum_k^{\text{spins \downarrow occupied}} \frac{\hbar^2 k^2}{2m}$$

$$E_x = -\frac{e^2}{2} \sum_{k,k'}^{\text{both spins \uparrow occupied}} \frac{1}{|k - k'|} - \frac{e^2}{2} \sum_{k,k'}^{\text{both spins \downarrow occupied}} \frac{1}{|k - k'|} .$$

For the unpolarized gas, we did the integrals in class, finding the result $E_{\text{tot}}/N = (3/5)\epsilon_f - (3/4\pi)e^2k_f$. For the polarized gas, this can be generalized to
\[
\frac{E_{\text{tot}}}{N} = \frac{3}{5} \left(\frac{n\varepsilon_{F\uparrow}}{n} + \frac{n\varepsilon_{F\downarrow}}{n} \right) - \frac{3e^2}{4\pi} \left(\frac{n\varepsilon_{F\uparrow}}{n} k_{F\uparrow} + \frac{n\varepsilon_{F\downarrow}}{n} k_{F\downarrow} \right).
\]

where \(k_{F\uparrow} = (6\pi^2 n)^{1/3} \), and the other notation follows logically.

(a) Express the total energy in terms of the electron density \(n \) and the spin density \(m \). Evaluate your answer in the limiting cases \(m=0 \) and \(m=n \).

(b) Find the density at which the total energy of the fully polarized gas \((m=n)\) equals that of the unpolarized gas \((m=0)\). For what densities is the polarized electron gas stable?