Phy555 Fall 2007 Lecture 6 Wednesday Sept. 19

What is special about eigenvectors |i> of D ?

$|s\rangle=A \cos (\omega t+\varphi) \mid$ is is a solution of Newton's laws provided
ω is chosen as the eigenvalue ω_{i}. It is a "stationary solution" or "normal mode." The "pattern" of oscillation is fixed in time.

The normal modes are "complete." All solutions of Newton's laws can be built from them. They also generate corresponding quantum results, i.e. solutions of the Schrödinger equation.
A simple way to designate a complete set of stationary (many body) quantum states is $\left|n_{1}, n_{2}, \ldots, n_{i}, \ldots\right\rangle$. This specifies, for each normal mode, the integer level n_{i} of excitation of the $i^{\text {th }}$ mode. Reinterpretation:
Instead of the excitation level of a normal mode, we regard n_{i} as its "occupancy." That is, we ask how many quanta of vibration are "in the $\mathrm{i}^{\text {th }}$ mode."

The different normal modes are "independent" (in Harmonic approximation.) All extensive thermodynamic functions are sums over the thermodynamics of the independent normal modes. There are 3 N normal modes for a bound system of N atoms in $\mathrm{d}=3$ (actually 3N-6 when we separate uniform translations and rotations.)

4: Periodic systems and Bloch's theorem

lattice constant a
A finite system can't be truly periodic. Solution-Born-von Karman (periodic) boundary conditions. Attach periodic replicas which copy the N -atom finite system.

$$
V=\frac{1}{2} k\left(u_{1}-u_{2}\right)^{2}+\frac{1}{2} k\left(u_{2}-u_{3}\right)^{2}+\ldots+\frac{1}{2} k\left(u_{N}-u_{1}\right)^{2}
$$

Finite and periodic
$-m \frac{d^{2}}{d t^{2}}\left(\begin{array}{l}u_{1} \\ u_{2} \\ u_{3} \\ u_{4} \\ u_{5} \\ u_{6}\end{array}\right)=\left(\begin{array}{cccccc}2 k & -k & 0 & 0 & 0 & -k \\ -k & 2 k & -k & 0 & 0 & 0 \\ 0 & -k & 2 k & -k & 0 & 0 \\ 0 & 0 & k & 2 k & -k & 0 \\ 0 & 0 & 0 & k & 2 k & -k \\ -k & 0 & 0 & 0 & -k & 2 k\end{array}\right)\left(\begin{array}{l}u_{1} \\ u_{2} \\ u_{3} \\ u_{4} \\ u_{5} \\ u_{6}\end{array}\right)$

Unequal masses are treated as in $\mathrm{CO}_{2}-$ Homework!

Translation operators \hat{T}_{n}

$$
\hat{T}_{1}\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4} \\
u_{5} \\
u_{6}
\end{array}\right)=\left(\begin{array}{l}
u_{2} \\
u_{3} \\
u_{4} \\
u_{5} \\
u_{6} \\
u_{1}
\end{array}\right)=\left(\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4} \\
u_{5} \\
u_{6}
\end{array}\right) \begin{gathered}
\text { Multiplication rules: } T_{i} \\
\text { form an Abelian group } \\
T_{1}{ }^{2}=T_{2}, T_{1} N=T_{N}=T_{0}=1 \\
T_{1}^{-1}=T_{-1}, \quad T_{m} T_{n}=T_{m+n} \\
T_{m} T_{n}=T_{n} T_{m}
\end{gathered}
$$

Newton equation of motion in matrix form using translation matrices

$$
\left.-\frac{d^{2}}{d t^{2}}\left|u>=\frac{k}{m}\left(2 \hat{T}_{0}-\hat{T}_{1}-\hat{T}_{-1}\right)\right| u>=\hat{D} \right\rvert\, u>
$$

Dynamical matrix D is built from translation matrices T, and commutes with them. Therefore, we can build eigenstates of the dynamical matrix using eigenstates of translations. These are traveling waves.

Look for eigenstates of T_{1}

Bloch's Theorem

Operators like \mathcal{H} and D for a periodic system commute with the translations. Therefore, we can choose eigenstates of \mathcal{H} and D to be simultaneously eigenstates of all T_{i}. These eigenstates are labeled by their wavevector \vec{k}.
$\hat{T}_{1}\left|k>=e^{i k a}\right| k>\quad \hat{D}=\frac{k}{m}\left(2 \hat{T}_{0}-\hat{T}_{1}-\hat{T}_{-1}\right) \rightarrow \frac{k}{m}\left(2-e^{i k a}-e^{-i k a}\right)$
$\omega^{2}(k)=$ eigenvalue of $D=\frac{k}{m}(2-2 \cos (k a))=4 \frac{k}{m} \sin ^{2}(k a / 2)$
$\omega(k)=\omega_{\max }|\sin (k a / 2)|$

$$
\omega_{\max }=2 \sqrt{\frac{k}{m}}
$$

Continuum ("Debye") limit: propagating sound waves $\omega=\mathrm{v}|\mathrm{k}|$

Counting rules in k -space.

1. There are exactly N kevectors \vec{k} which label the inequivalent eigenvectors $\mid k>$ of T. These Nk -vectors lie in the Brillouin zone.
2. Bloch states $\mid k>$ with inequivalent \vec{k} 's are orthogonal. Norm $=1$. Thus $\left\langle k^{\prime} \mid k\right\rangle=(1 / N) \sum_{R} e^{i\left(k-k^{\prime}\right) R}=\delta\left(k, k^{\prime}\right)$ modulo G
3. The states $\mid k>$ are complete in the N-dimensional space:
$\Sigma_{k}|k \times k|=(1 / N) \sum_{k} e^{i k\left(R-R^{\prime}\right)}=\delta\left(R-R^{\prime}\right) \quad[R$ runs over the discrete lattice points.]
4. Sums become integrals: $\sum_{k} f(k)=\left(\frac{L}{2 \pi}\right) \int d^{d} k f(k)$

Ziman's notation

I will use ω instead of v.
Same linear chain, lattice constant a, spring constant α, alternating masses M_{1} and M_{2}.

spring constant

Cell 2
Fig. 17. Diatomic linear chain.

Cell 3

substitution

$$
u_{l}=U_{Q} e^{i q l}
$$

has been generalized: $u_{n 1}=U_{1}(t) \exp (i q(2 n) a)$ $u_{n 2}=U_{2}(\dagger) \exp (i q(2 n+1) a)$

To find the frequency ν, we must solve the determinantal equation

$$
\left|\begin{array}{cc}
2 \alpha-M_{1} \nu^{2} & -2 \alpha \cos q a \tag{2.23}\\
-2 \alpha \cos q a & 2 \alpha-M_{2} \nu^{2}
\end{array}\right|=0
$$

which has the two roots

$$
\begin{equation*}
\nu_{ \pm}^{2}=\alpha\left(\frac{1}{M_{1}}+\frac{1}{M_{2}}\right) \pm \alpha \sqrt{\left\{\left(\frac{1}{M_{1}}+\frac{1}{M_{2}}\right)^{2}-\frac{4 \sin ^{2} q a}{M_{1} M_{2}}\right\} ~} \tag{2.24}
\end{equation*}
$$

using mass-scaled
variables: $\quad\left(\begin{array}{cc|}-2 \alpha \cos (q a) / \sqrt{M_{1} M_{2}} & 2 \alpha / M_{2}\end{array}\right)\binom{U_{1}}{U_{2}}=\omega^{2}\binom{U_{1}}{U_{2}}$

end of recycled lecture!

$$
\begin{align*}
& \mathscr{V}=\mathscr{V}_{0}+\sum_{s l j} u_{s l}^{j}\left[\frac{\partial \mathscr{V}}{\partial u_{s l}^{j}}\right]_{0}+\frac{\frac{1}{2}}{s s^{\prime}, u^{\prime}, j j^{\prime}}{ }^{u_{s l}^{j}} u_{s^{\prime} T^{\prime}}^{j^{\prime}}\left[\frac{\partial 2 \mathscr{V}}{\partial u_{s l}^{j} \partial u_{s s^{\prime} T}^{j^{\prime}}}\right]_{0}+\ldots \tag{2.2}\\
& M_{s} u_{s l}^{j}=-\sum_{s^{\prime} Z^{\prime} j^{\prime}}\left[\frac{\partial^{2} \mathscr{V}}{\partial u_{s l^{\prime}}^{j} \partial u_{s^{\prime} t^{\prime}}^{j^{\prime}}}\right]_{0 s^{\prime}} u_{s^{\prime} l^{\prime}}^{j^{\prime}}
\end{align*}
$$

counting: N values of l, n values of $s, 3$ values of j
$N=\#$ cells in crystal; $n=\#$ atoms in unit cell, $3=\#$ dimensions of space.
$3 n N \times 3 n N$ matrix eigen problem ("generalized Hermitean eigenvalue problem; convert to ordinary Hermitean eigenvalue problem using mass-weighted coordinates.

$$
\begin{aligned}
\hat{M} \frac{d^{2}}{d t^{2}}|u\rangle & =-\hat{K}|u\rangle & |s\rangle=\hat{M}^{1 / 2}|u\rangle \quad \hat{D}=\hat{M}^{-1 / 2} \hat{K} \hat{M}^{-1 / 2} \quad \frac{d^{2}}{d t^{2}}|s\rangle=-\hat{D}|s\rangle \\
\hat{D}\left|s_{\lambda}\right\rangle & =\omega_{\lambda}^{2}\left|s_{\lambda}\right\rangle & |u(t)\rangle=\sum_{\lambda} A_{\lambda} \cos \left(\omega_{\lambda} t+\phi_{\lambda}\right) \hat{M}^{-1 / 2}\left|s_{\lambda}\right\rangle \begin{array}{c}
\text { the general } \\
\text { solution of } \\
\text { Newton's law }
\end{array}
\end{aligned}
$$

Bloch-wave transformation: 3 nN -vector |s> as direct product of $3 n$-vector $\mid \varepsilon>$ and N-vector |Q>

$$
\begin{gathered}
s_{s \ell}{ }^{j}=\varepsilon_{s j} e^{i \vec{Q} \cdot \vec{l}} / \sqrt{N} \\
|s\rangle=|\varepsilon(\vec{Q})\rangle \otimes|\vec{Q}\rangle
\end{gathered}
$$

$$
|\varepsilon(\vec{Q})\rangle=\left(\begin{array}{c}
\varepsilon_{1 x} \\
\varepsilon_{1 y} \\
\vdots \\
\varepsilon_{n z}
\end{array}\right)
$$

$$
|\vec{Q}\rangle=\frac{1}{\sqrt{N}}\left(\begin{array}{c}
\exp \left(i \vec{Q} \cdot \ell_{1}\right) \\
\exp \left(i \vec{Q} \cdot \ell_{2}\right) \\
\vdots \\
\exp \left(i \vec{Q} \cdot \ell_{N}\right)
\end{array}\right)
$$

Translational invariance: $\left\langle\vec{\ell}^{\prime}, s^{\prime} \alpha^{\prime}\right| \hat{D}|\vec{\ell}, s \alpha\rangle=\left\langle 0, s^{\prime} \alpha^{\prime}\right| \hat{D}\left|\vec{\ell}-\vec{\ell}^{\prime}, s \alpha\right\rangle$

Transform from one orthonormal basis to another via a unitary matrix:

The dynamical matrix is "block-diagonalized":

$$
\begin{aligned}
& \sum _ { \ell , \hat { l } ^ { \prime } } \langle \vec { Q ^ { \prime } } | \vec { \ell ^ { \prime } } \rangle \langle \vec { \ell } ^ { \prime } , s ^ { \prime } \alpha ^ { \prime } | \hat { D } | \vec { \ell } , s \alpha \rangle \langle \vec { \ell } | \vec { Q } \rangle = \langle s ^ { \prime } \alpha ^ { \prime } | \hat { D } (\vec { Q }) s \alpha \rangle \longdiv { \delta _ { \vec { Q } , \vec { Q } } } \\
& \left\langle s^{\prime} \alpha^{\prime} \mid \hat{D}(\vec{Q}) s s\right\rangle=\sum_{\hat{\ell}, \hat{l}^{\prime}}\left\langle\vec{\ell}^{\prime}, s^{\prime} \alpha^{\prime}\right| \hat{D}|\vec{\ell} s \alpha\rangle e^{i \hat{\theta} \cdot\left(\vec{\ell}-\bar{e}^{\prime}\right)} / N \\
& \sum_{\vec{\ell}, \hat{l}^{\prime}}\langle\vec{Q} \mid \vec{\ell}\rangle\langle\vec{\ell}, s \alpha \mid u\rangle=\varepsilon_{s \alpha}(\vec{Q}) \\
& \hat{D}(\vec{Q})\left|\varepsilon_{\lambda}(\vec{Q})\right\rangle=\omega_{\lambda}{ }^{2}(\vec{Q})\left|\varepsilon_{\lambda}(\vec{Q})\right\rangle
\end{aligned}
$$

$\hat{D}(\vec{Q})$ is the $3 n \times 3 n$ dynamical matrix, $\varepsilon_{\lambda}(\vec{Q})$ is the $3 n$-eigenvector or $\begin{gathered}\text { "polarization vector" }\end{gathered}$ (mass-weighted)

Umklapp versus Normal

a. x-ray or neutron inelastic scattering

Fig. 32. (a) Normal process. (b) Umklapp process.

b. anharmonic phonon decay

When $Q+Q_{1}$ lies outside the zone, map it back to Q_{2} inside the zone (Umklapp process) i.e. subtract a reciprocal lattice vector.

Conservation of crystal momentum

$$
\vec{Q}_{1}+\vec{Q}_{2}+\cdots=\operatorname{const}(\bmod \vec{G})
$$

a consequence of discrete crystalline translational invariance, e.g.,

$$
V_{\alpha \beta r}\left(\vec{\ell}_{1}, \vec{\ell}_{2}, \vec{\ell}_{3}\right)=V_{\alpha \beta \gamma}\left(0, \vec{\ell}_{2}-\vec{\ell}_{1}, \vec{\ell}_{3}-\vec{\ell}_{1}\right)
$$

just as Newtonian momentum conservation is a consequence of the translational symmetry of space.
the mathematical $\frac{1}{N} \sum \exp \left[i\left(\vec{Q}_{1}+\vec{Q}_{2}+\cdots\right) \cdot \vec{\ell}\right]=\left\{\begin{array}{l}1 \text { if } \vec{Q}_{1}+\vec{Q}_{2}+\cdots=0(\bmod \vec{G})\end{array}\right.$ root of it:

Density of states

Let us consider, for simplicity, a single branch of the spectrum. The proportion of modes with frequency in the range $d \nu$ is equal to

$$
\begin{equation*}
\mathscr{D}(\nu) d \nu=\frac{v_{c}}{8 \pi^{3}} \iiint d^{3} q, \tag{2.65}
\end{equation*}
$$

where the integration is through the volume of the shell in \mathbf{q}-space where $\nu \leqslant \nu_{0} \leqslant \nu+d \nu$.

$$
\mathscr{D}(\nu)=\frac{1}{8 \pi^{3} N} \int \frac{d S_{v}}{v_{q}} \quad D(\omega)=\frac{1}{N} \sum_{\vec{Q}} \delta\left(\omega-\omega_{\vec{Q}}\right)=\frac{V_{c}}{(2 \pi)^{3}} \int d^{3} Q \delta\left(\omega-\omega_{\vec{Q}}\right)
$$

Fig. 27. Different types of van Hove singularity.
A. S. Cote, I. Morrison, X. Cui X, S. Jenkins, and D. K. Ross, Ab-initio density-functional lattice-dynamics studies of ice CAN. J. PHY. 81, 115 (2003).

8 molecules/cell $\rightarrow 72$ branches

G. Dolling, R. A. Cowley, C. Schittenhelm, and I. M. Thorson, Normal Vibrations of Potassium Iodide, Phys. Rev. 147, 577 (1966) [inelastic neutron scattering experiment]

Recently, several observations have been made ${ }^{7-9}$ of localized modes of vibration in KI containing small amounts of KNO_{2}. A calculation of the vibration frequency of the NO_{2}^{-}ion in the KI lattice, on the basis of simple mass-defect theories, ${ }^{10}$ indicated that it would probably fall in the gap in the frequency distribution function of the host. In practice, a complex spectrum of localized modes is observed, which is believed ${ }^{8,11}$ to be associated with various rotational degrees of freedom of the $\mathrm{NO}_{2}{ }^{-}$ion. The present experiments and calculations give the location of the energy gap in pure KI with a precision of 2 or 3%, and confirm that the local modes of the $\mathrm{KI}: \mathrm{KNO}_{2}$ system do in fact fall within that gap.

