Phy555 Fall 2007 Lecture 6 Wednesday Sept. 19

What is special about eigenvectors |i> of D?

|s>=Acos(wt+9)|i> is a solution of Newton's laws provided
w is chosen as the eigenvalue w.. It is a "stationary solution”
or "normal mode.”" The "pattern” of oscillation is fixed in time.

The normal modes are "complete.” All solutions of Newton's

laws can be built from them. They also generate corresponding

quantum results, /.e. solutions of the Schraodinger equation.

A simple way to designate a complete set of stationary (many body)
quantum states is [n;, n,, ..., n, ..>. This specifies, for each normal mode,
the integer level n, of excitation of the ith mode. Reinterpretation:

Instead of the excitation level of a normal mode, we regard n; as its
“occupancy.” That is, we ask how many quanta of vibration are "in the ith mode."

The different normal modes are “independent” (in Harmonic
approximation.) All extensive thermodynamic functions are

sums over the thermodynamics of the independent normal modes.
There are 3N normal modes for a bound system of N atoms in d=3
(actually 3N-6 when we separate uniform translations and rotations.)




‘ 4. Periodic systems and Bloch's theorem \
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lattice constant a
A finite system can't be truly periodic. Solution -Born-von Karman (periodic)

boundary conditions. Attach periodic replicas which copy the N-atom finite system

= zk(up-u,)? + k(up-us)? + .+ k(un-up)?
Finite and periodic

(u, )

\Us
Unequal masses are treated as in CO, - Homework!



Translation operators T
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Newton equation of motion in matrix form using translation matrices

d? K(ie = = A
—-—|u>=—\2I1,-T,-T,)lu>=D|u>
dt m
Dynamical matrix D is built from translation matrices T, and commutes with

them. Therefore, we can build eigenstates of the dynamical matrix using
eigenstates of translations. These are traveling waves.



Look for eigenstates of T,

=€’ |¢>

If |¢> is an eigenstate of T,
with eigenvalue e, then it
is an eigenstate of T, with
eigenvalue e??, etc.

ei¢ ei2¢

ei2¢> ei3¢

g3/ _ i4¢

| ¢ >= o T, |¢>= Z5¢
ei5<,/> ei6¢>

| ©

eio fust be one of the

N roots of unity. There
are N such roots, on the
unit circle

»

|| Provided eiNo=1 (here N=6)

Warning - notation!
k is used for wave vector
and for spring constant!
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Mathematical meaning of
the wave vector k - the
eigenvalue of T, =T(a) is eka
Therefore, K and k+2nt/a

have exactly the same
meaning.




Bloch's Theorem

Operators like 7 and D for a periodic system
commute with the translations. Therefore,

we can choose eigenstates of # and D to be
simultaneously eigenstates of all T;. These

eigenstates are labeled by their wavevector k

-I’-\l | k >— eika | k > [’5 :5(21"\0 _Tl_'l"\_l)%%(z_eika _e—ika)
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Kk .
®2(K) = eigenvalue of D = —(2—2cos(ka))= 453”12(‘(3/2)

o(K) = W, |sin(ka/ 2)

K

Wy = 24— 2 |
m /
Continuum ("Debye") limit: oL
propagating sound waves w=v|k]|




Counting rules in k-space.

. There are exactly N k-vectors K which label the
inequivalent eigenvectors |k> of T. These N k-vectors
lie in the Brillouin zone. -

. Bloch states |k> with inequivalent K 's are orthogonal.

Norm = 1. Thus <k'|k>=(1/N)2eik-)R = §(k k') modulo &

. The states |k> are complete in the N-dimensional space:

2, [k><k| = (1/N)2, ekRR) = §(R-R') [R r'udns over the

discrete lattice points.]
. Sums become integrals: Z t(k)= jd KT (k)




Ziman's notation

T will use w instead of v.

Same linear chain, lattice constant a, spring constant o,
al’rerna’rmg masses M; and M,.

spring constan
K2a

™~

MU, = —2aU, + 2acosqa. U,
MyU, = —2aU,+ 2acosga.U,

Cell 1

T e T L _—————

Cell 2

Fig. 17. Diatomic linear chain.

} (2.22)

i S e e ity |

CeH 3
substitution
w = U, e

has been generalized:
Ups= 1(’f)e><P(iq(2n)a)
Ua(t)exp(iq(2n+1)a)

Un2=
To find the frequency v, we must solve the determinantal equation v
20— M, v? —20cosqa ~ |
' 1 = 0, (2‘23) /Opnml ’
— 2a cosqa — M, v? T
which has the two roots
1 1 1  1)? 4sin® qa]
= | — (2,24
R S AN (RS v
200/ M, —2accos(ga)/ /MM

using mass-scaled
variables:

—2accos(ga)/ /MM,

200/ M,

U U
2 1 2 1
=w -7 (o] nf2a
J(Uz] (Uz] . =

Fig. 18. Vibration frequencies of distomic chain.



end of recycled lecture!
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counting: N values of €, n values of s, 3 values of j
N = # cells in crystal; n = # atoms in unit cell, 3 = # dimensions of space.
3nN x 3nN matrix eigen problem ("generalized Hermitean eigenvalue problem;
convert to ordinary Hermitean eigenvalue problem using mass-weighted coordinates.
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Newton's law

Bloch-wave transformation: 3nN-vector |s> as direct product of

3n-vector &> and N-vector |Q> L =
| ~ Q Eqy exp(l Q-7

Sy’ = ¢ ¥ 1IN eigenvectors = 2 S 1 exp(i Q-/
R Qh=| | |Q A
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Translational invariance: (#',sa/|D|7,sa)=(0,sa

Transform from one

orthonormal basis to
another viaa

unitary matrix:

The dynamical matrix
is "block-diagonalized":

D(Q) is the 3n x 3n dynamical matrix, &, (Q) is“’rhe 3(\—eigenvec’ror'"or‘
polarization vector

(mass-weighted)



Umklapp versus Normal b. anharmonic phonon decay
a. X-ray or neutron

inelastic scattering decay into 2 phono(g\j\/ Q

Q N\

:i Q 1,L/H Q 2

.f\/\/\/Qq

ﬂbsorbing a ‘rher'malb
: phonon Q;, emitting Q,

FI_L_.{. 32. (a) Normal process. (b) Un]h]upp process. Q

(a)

Q, < When Q+Q, lies outside the

Q/ zone, map it back to Q, inside
Qs the zone (Umklapp process) -
i.e. subtract a reciprocal lattice
vector.




Conservation of crystal momentum
Q +Q, +---=const(modG)

a consequence of discrete crystalline translational invariance, e.g.,

Vo (00,7,,7,)=V,, 0,7,-7,,7,-7,)

afy By

just as Newtonian momentum conservation is a consequence
of the translational symmetry of space.

he —Zexp[ (Q +6on ) q] 7if Q+Q,+---=0(modG)
mathematica L2 O otherwise . _ .
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Density of states

Let us consider, for simplicity, a single branch of the spectrum. The I like o use o instead of v.

proportion of modes with frequency in the range dv is equal to The ftrue mathematical
e meaning of Ziman's expression
QL g—,;a”fds , (2.65) s correctly captured by the

where the integration is through the volume of the shell in q-space Dirac delta function:

where v < v, < v+dv.
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Fig. 27. Different types of van Hove singularity.



Density of states

A. S. Cote, I. Morrison, X. Cui X, S. Jenkins, and D. K. Ross,
Ab-initio density-functional lattice-dynamics studies of ice
CAN. J. PHY. 81, 115 (2003).
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G. Dolling, R. A. Cowley, C. Schittenhelm, and I. M. Thorson,
Normal Vibrations of Potassium Iodide, Phys. Rev. 147,577 (1966)
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' ' ' 2. Local Modes in Potassium Iodide
: | REDlIJCED : WAVE VECTOR COORDINATE Recently, several observations have been made™® of
l localized modes of vibration in KI containing small
amounts of KNO;. A calculation of the vibration fre-
quency of the NO,~ ion in the KI lattice, on the basis
E of simple mass-defect theories," indicated that it would
2 probably fall in the gap in the frequency distribution
2 function of the host. In practice, a complex spectrum
5 of localized modes is observed, which is believed®! to
£ n be associated with various rotational degrees of freedom
of the NO,~ ion. The present experiments and calcula-
!
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¥16. 4. Equivalent “Debye” frequencies computed from the
moments of the distribution function (Fig. 2) and compared with

values (filled circles) derived from heat-capacity data.®

tions give the location of the energy gap in pure KI
with a precision of 2 or 3%, and confirm that the local
modes of the KI:KNO, system do in fact fall within
that gap.



