Formulas that might be memorized (but it is equally if not more important to understand the derivation well enough that you could derive these in a minute or two.)

$$k_F = (3\pi^2 n)^{1/3}$$
 where n is the number density of "free" electrons in a metal

 $D(\varepsilon_F) = 3n/2\varepsilon_F$ States per energy per volume (for both spins) at the Fermi level, in a free electron gas in 3d.

$$D(\varepsilon) = D(\varepsilon_F)(\varepsilon/\varepsilon_F)^{d/2-1}$$
 Free electrons in any number of dimensions

$$\omega_P = (4\pi n e^2 / m)^{1/2}$$
 Free electrons

 $\varepsilon = 1 + 4\pi i\sigma/\omega$ This follows from the Maxwell idea of $\partial P/\partial t$ as the current of the bound charges

 $\varepsilon = 1 - \omega_p^2 / \omega (\omega + i / \tau)$ Metals in free-electron approximation if ω_p is written as above. However, the formula is more generally applicable because ω_p can be generalized.

 $\sigma = ne^2 \tau / m$ for currents carried by electronic quasiparticles as in a metal or a nicely doped semiconductor. The units are tricky. If cgs units are used, the unit of σ is s⁻¹, consistent with the equation $\mathcal{E} = 1 + 4\pi i \sigma / \omega$. If you use SI (same as mksa) units, then σ has the correct dimensions of C²s/kgm³ = C²/Jsm = A/Vm = 1/\Omegam. To convert σ in SI to σ in cgs, you multiply by $1/4\pi\epsilon_0 = 9 \times 10^9 \text{ Jm/C}^2$. Perhaps I will give you σ and ask you to find τ .