Localized vibrational mode

The linear chain (mass M , spring constant K) has propagating normal modes $u_{\ell}=A \exp \left|i\left(Q \ell-\omega_{Q} t\right)\right|$, where $-\pi<Q<\pi$ and $\omega_{Q}=\omega_{0}|\sin (Q / 2)|$ and $\omega_{0}=2 \sqrt{K / M}$. These are solutions of Newton's laws, and can be quantized if desired.

According to problem set 3 , if there is a mass $m<M$ located at the site $\ell=0$, then there is also a localized solution $u_{\ell}=(-1)^{\ell} A \exp (-\alpha \mid \ell) \exp \left(-i \omega_{L} t\right)$, where the decay constant α is positive and the localized mode frequency ω_{L} lies above the top of the continuous spectrum of modes of the perfect chain, $\omega_{L}>\omega_{0}$. The values of α and ω_{L} can be found by direct substitution into Newton's laws: $\alpha=\log (2 M / m-1)$ and $\omega_{L}^{2}=\omega_{0}^{2}[(M / m) /(2-m / M)]$.

The same answers are easily found by the Lippmann-Schwinger approach used by Ziman. This is an alternate formulation of the Newtonian equations. Start by assuming the time-dependence $u_{\ell} \propto \exp \left(-i \omega_{L} t\right)$. Then $\left(\hat{M}+\hat{M}_{1}\right) \omega^{2}|u\rangle=\hat{K}|u\rangle$ is the equation of motion, where the mass matrix \hat{M} is just the mass M times the unit matrix in atom location space, and the perturbation $\hat{M}_{1}=(m-M)|0\rangle\langle 0|$ is spatially localized in this space. The Green's function is $\hat{G}(\omega)=\left(\omega^{2}-\hat{K} / \hat{M}\right)^{-1}$. The Lippmann-Schwinger equation is $|s\rangle=\hat{G}(\omega) \hat{\Delta}|s\rangle$, where the perturbation is $\hat{\Delta}=(1-m / M) \omega^{2}|0\rangle\langle 0|$. We look for a solution at a split off frequency $\omega_{L}>\omega_{0}$, where the solution $u_{\ell}=\langle\ell \mid s\rangle$ is spatially decaying. The Green's function has an explicit representation in terms of the eigenstates

$$
\hat{G}(\omega)=\sum_{Q}|Q\rangle\left(\omega^{2}-\omega_{Q}^{2}\right)^{-1}\langle Q| .
$$

The Lippman-Schwinger equation for the localized solution is then

$$
\frac{u_{\ell}}{u_{0}}=\left(1-\frac{m}{M}\right) \sum_{Q}\left[\frac{\omega^{2}}{\omega_{L}^{2}-\omega_{Q}^{2}}\right] e^{i Q \ell}=\left(1-\frac{m}{M}\right) \frac{1}{2 \pi} \int_{-\pi}^{\pi} d Q \frac{1}{1-\gamma \sin ^{2}(Q / 2)} e^{i Q \ell}
$$

where $0<\gamma=\omega_{0}^{2} / \omega_{L}^{2}<1$. To evaluate the integral, it is convenient to switch the variable of integration from the real number Q to the complex number $z=e^{i Q}$. As Q cycles once in the Brillouin zone, z cycles once around the unit circle.
$\frac{u_{\ell}}{u_{0}}=\left(1-\frac{m}{M}\right) \frac{4}{\gamma} \frac{1}{2 \pi i} \oint d z \frac{z^{\ell}}{z^{2}+(4 / \gamma-2) z+1}=\left(1-\frac{m}{M}\right) \frac{4}{\gamma} \frac{1}{2 \pi i} \oint d z \frac{z^{\ell}}{\left(z-z_{+}\right)\left(z-z_{-}\right)}=\left(1-\frac{m}{M}\right) \frac{4}{\gamma} \frac{z_{+}^{\ell}}{z_{+}-z_{-}}$
The roots of the denominator are $z_{ \pm}=-\beta \pm \sqrt{\beta^{2}-1}$, where $\beta=2 / \gamma-1>1$. The roots are both real, with z_{+}lying inside the unit circle and $z_{\text {- l lying outside. Now evaluate at }}$ $\ell=0$, and at $\ell \neq 0$:

$$
\frac{u_{0}}{u_{0}}=1=\left(1-\frac{m}{M}\right) \frac{4}{\gamma} \frac{1}{z_{+}-z_{-}}=\left(1-\frac{m}{M}\right) \frac{4}{\gamma} \frac{1}{2 \sqrt{\beta^{2}-1}} \text { and } \frac{u_{\ell}}{u_{0}}=(-1)^{\ell} e^{-\alpha \ell}
$$

After some manipulations, the previous formulas for ω_{L} and α are retrieved.

