
PHY 555 Fall 2007 -- Phonon Notes 
 
The harmonic energy of any stable collection of particles is 
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where u  is displacement and uMs 2/1ˆ= is mass-weighted displacement.  Now 

diagonalize the dynamical matrix 2/12/1 ˆˆˆˆ −−= MKMD , 
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The notation is that Q  is the wavevector and j is the branch index for the 3n branches, 
when there are n atoms in the unit cell.  The eigenstates are complete, and we can use 
them to represent the terms in the energy expression, using  
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The result is 
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This has the form of uncoupled oscillators, but has the unfortunate aspect of introducing 
dynamical variables ( )jQs

r
 and ( )jQs

r
&  that are complex.  Since each variable has both real 

and imaginary parts, there are twice as many variables as we need.  There is no avoiding 
complex variables, but the problem of excess apparent variables is resolved by careful 
analysis.  Notice that  is a real symmetric matrix, while the eigenstates D̂ jQ

r
 are 

necessarily complex because Bloch’s theorem has been exploited.  However, if a 
complex eigenvector is found for a real matrix, it is guaranteed that the complex 
conjugate vector is also an eigenstate (and has the same eigenvalue).  The complex 
conjugate of jQ
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 has wavevector Q
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label as jQ
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− .  Here a phase convention is being chosen, namely that the phases of jQ
r

 

and jQ
r

− are forced to be such that these states are complex conjugates of each other.  
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It also follows that 
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This shows that there are only half as many independent dynamical variables as appeared 
at first sight.  
 
Classical treatment 
 
So far, the algebra did not depend on any distinction between classical and quantum 
mechanics.  In the classical treatment, the primitive variables 
( ) ( ) suMs ααα α l
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== 2/1  are real numbers, whereas the new variables ( )jQs
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 are 



complex.  The notation is that ( )αlrs  is the mass-weighted displacement ( )αlru  of the 
atom whose cell is denoted by l

r
.  The additional 3n choices (n atoms in the cell and 3 

Cartesian directions) are all summarized by the index α. 
 
The general solution of Newton’s law for the primitive variables is 
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where the amplitude ( ) ( )tsjQtjQs
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=, of the jQ
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-normal mode has been written as a 

positive amplitude ( )jQA
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 times a time-dependent phase factor  ( ) ( )[ ]tjQijQi
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The eigenvectors jQ
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 of the dynamical matrix have the spatial representation 
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where ( )jQ
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αε  is called the “polarization vector.”   It is normalized by the equation 

( ) ( ) ( ) ( ',','' jjQQjQjQ δδεε
α

αα )
rrrr

=∑
∗

.  It cannot in general be forced to be real, but is 

forced to obey the relation ( ) ( jQjQ )rr
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Suppose it is desired to calculate an average quantity like ( ) ( ) .','', tutu αα l
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  In thermal 

equilibrium, the amplitudes ( )jQA
r

 are Gaussian random numbers, distributed with 
probability 
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while the phases ( )jQ
r

φ  are randomly distributed between 0 and 2π.   Statistical averages 
of products of cosines are simple. 
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This is proved by using , and then noting that 
the average of 
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)cos( φ+x is 0 if φ is random.  Then the result is 
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In particular, the average that enters the “Debye-Waller factor” in the scattering cross-
section is 
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There are 3nN terms in the sum.  N cancels 1/N, and 3n balances the squared ε-vector. 



 
Quantum treatment:  
  
First write the Hamiltonian in the form 
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Now introduce the new variables 
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In terms of these variables, the energy is 
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Check the commutation relations: 
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Hamiltonian can be written as 
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Statistical averages are easily found by using  
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For example, to find the Debye-Waller factor, the first step is to invert Eqs. 12: 
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it is easy to get the quantum generalization of Eq. (10), 
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where ( )jQn
r

 is the Bose-Einstein distribution given in Eq. (15). 


