Physics 555 Fall 2011 Problem Set 9 Due Friday Dec. 9.

1. Cooper pair radius. The spatial part of the wave-function of a Cooper pair is
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where r is the relative coordinate rz-r1 of the opposite spin electrons of the pair.
This is the pair of Cooper’s problem, superimposed on the Frozen Fermi sea, with
Pauli-principle restriction forcing k to lie outside the occupied region.

a. Show the second equality below follows from the first.
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b. Using the solution for g(k) found in class, evaluate (to lowest order) the Cooper-
pair radius, for the case where A << Q<<¢r. If the binding energy A is ~ 2 meV (e.g.,
metallic Pb), what would be the approximate radius?

2. Quasiparticle entropy. There is an elegant statistical argument indicating that
for any system of weakly interacting Fermions (even when not in equilibrium!) the
entropy is a simple function of the distribution fi. Note that f; need not be equal to
the Fermi-Dirac distribution, but does if the system is in equilibrium. A proofis in
the Landau-Lifshitz text Statistical Physics Part 1. You do NOT need to read this
unless you are curious. The formula is:
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where the index i labels the different single-particle states. In the first part of this
this exercise, you are supposed to prove that this formula is equivalent to the one
you can get from the common text-book derivations.
a. The usual derivation is for equilibrium with a temperature bath at temperature T
and a particle bath at chemical potential u. The partition function is calculated
separately for each state i of energy ¢; which can be either empty or full. Derive the
total partition function, and from that, the free energy, and from that, the entropy.
Verify that it agrees with the formula above, if f; is the Fermi-Dirac distribution.
b. Verify that if you use only the formula above, for general f;, you can derive the
Fermi-Dirac distribution by asking “what form of f; gives the maximum entropy at a
fixed total Fermion number N = X f; and total energy U =Z ¢fi.” You may need
Lagrange multipliers.

3. BCS density of states. An electron gas has a density of states N(&) which takes
the value N(0) at the Fermi energy £=0. The notation is that & = ex -u. The BCS
excitations have energy E; = & + A’. We neglect the possible k-dependence of the
gap. The energy Ex is the positive square root. To be consistent, we should then use
a convention for the normal excitations that & = |& -y|. This is equivalent to the
“hole convention” for hole-type states (i.e. a particle removed from a state below the
Fermi energy costs a positive energy.) Now we can define the “density of
excitations” which is similar to the density of states, but with the sign convention of



the hole language. The density of excitations in a normal metal is then, for positive
&k, 2N(0). We neglect the energy dependence for excitation energies & small
compared with the Fermi energy. Compensating the factor of 2, there are zero
excitations at negative energies &
a. In terms of the normal state N(0), compute the BCS density of excitations (E is
positive).
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Even though you may think of this as derived from a free-electron result
(&, =7k’ /2m —¢,)), your answer will be also correct for any metallic electron
spectrum as long as Nyormal(E) varies with € on a scale slow compared with A.
b. The entropy can then be written as
S/ky =~ [ dEN s (E) f(E)In f(E) + (1= f(E)In(l - f(E))]
Derive the formula for the BCS superconducting state specific heat, expressed as an

energy integral. What approximate T-dependence does this imply at low T (where
you can neglect the T-dependence of A)?

4. Nodes in the gap. Many interesting superconductors have been discovered in
the last 25 years. Many of them have a layered structure. They can be regarded, to
decent approximation, as two-dimensional systems (dispersion of quasiparticles in
the “c” direction is small and is neglected compared with dispersion in the a-b
plane.) Some such systems apparently have “nodes” in their k-dependent gap. The
gap, A(k), is defined for quasiparticle states k near the Fermi “surface”, and depends
only on the value of k at the Fermi surface. There is no dependence on k
perpendicular to the Fermi surface (in the usual picture.) There are points k, on the
two-dimensional Fermi surface where A(k,) = 0. Consider a simple model where the

Fermi surface is a circle centered at k = 0, of radius k, =+/(2me,)/h. The k-
dependent gap is approximated as A(k) = Acos(n¢), where ¢ is an angle measured
from the center of the “Fermi circle.” The gap vanishes at angles

¢, = p 27 /n+m/2n, and alternates in sign in between, except for the “s-wave” case
n=0. The cases n = 1,2,... are p-wave, d-wave, etc. Near the nodal angles ¢, the
quasiparticle excitations (for n # 0) have energies E; = & +(n(¢ - ¢,)A)*. Atthe

nodal points, the energies are just normal state energies | & |. Show that the BCS
density of excitations is no longer in the form you derived above, but instead is
proportional to the normal state density of states, reduced by a factor proportional
to (E/A), for E small compared with A. What does this do to the specific heat at low
T (where you can take A to be independent of T)?



