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Lines of accidental degeneracies (lines of Dirac points) and Berry phases 

in electron energy bands:  aluminum as an example. 
 

 
 

Aluminum is a “free electron metal.  The electron density of states, from E. 
Kaxiras, Atomic and Electronic Structure of Solids (Cambridge, 2003), is shown above, 
and compared with those of Si and Ag.  There are three valence electrons, enough to fill 
the fcc Brillouin zone 1.5 times.  Thus, a little below the Fermi energy, the bands start to 
intersect the Brillouin zone boundary.  At this point, gaps of order 1 eV or less, open, 
pushing the lower bands to lower energy and the higher bands to higher energy, but not far 
enough to open a full gap.  In an applied dc magnetic field, oscillations at low T (de Haas-
van Alphen effect, and other related effects) can be measured, and show that the 
geometrical shapes of the Fermi surface are quite complicated.  Nevertheless, they can be 
understood as the consequence of a weak crystal potential.  The Brillouin zone is shown in 
the adjacent figure.  The “W” points (at wavevector W=(2π/a)(1,.5,0), one of 24 
rotationally similar points) are farthest from the zone center.  The corresponding free 
electron energy (using Rydberg atomic units where Planck’s constant is 1 and the mass of 
the electron is ½) is =0.855 Ry, using the lattice constant a=4.02 
Angstrom.  This lies only 2% below the free electron Fermi energy, 

=0.869 Ry=11.8 eV, using 3 free electrons, per unit cell of one 
atom.  Of the 24 W points, groups of 4 are translationally equivalent, differing by 
reciprocal lattice vectors.  Consider the quartet 
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These are all translationally “the same” k-vector.  If we want to find the energy of the 
nearly free electron state at the W point, we must solve the 4 x 4 matrix formed by 
coupling these 4 plane-wave states.  It was realized around 1960 by Harrison, Heine, and 
Ashcroft, that the important region of k

r
-space where the Fermi surface is close to zone 



boundaries, is mostly quite close to a W point.  For a k-vector 1k
r

close to the W1 point, the 
crystal potential will couple the plane wave ( )rki rr

⋅= 1exp1 to three other plane waves 

( )rki rr
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r
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 The Hamiltonian matrix for this state is  
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where εi is the free electron energy ( 22 δ )rrr
+= ii Kk , V3 (often written as V111) is 

( )11113 GVV
r

= , a Fourier component of the crystal potential, and V4 (often written as 

V200) is ( )20012 GVV
r

= .  Right at the W point, the matrix is particularly simple, 
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and can be diagonalized easily with the help of group theory.  The 48 symmetry operations 
of the crystal point group Oh generate only 6 translationally distinct W points, so the “little 
group” of the wavevector W has 8 elements and is D2d.  The character table  

D2d E 2S4 C2 2C'2 2σd

linear 
functions,
rotations 

quadratic
functions

cubic 
functions

Plane waves 

A1 +1 +1 +1 +1 +1 - x2+y2, z2 xyz (W1+W2+W3+W4)/2 

A2 +1 +1 +1 -1 -1 Rz - z(x2-y2)  

BB1 +1 -1 +1 +1 -1 - x2-y2 -  

BB2 +1 -1 +1 -1 +1 z xy z3, 
z(x2+y2) 

(W1+W2-W3-W4)/2 

E +2 0 -2 0 0 (x, y)  
(Rx, Ry) 

(xz, yz) 

(xz2, yz2) 
(xy2, 
x2y) (x3, 
y3) 
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W 4 0 0 0 2    A1+B2+E 

is given above.   The z axis is the C2 axis; the x axis coincides with the C'2 axis.  The four 
equivalent W points correspond to four different plane waves which generate a 4-
dimensional reducible representation, which reduces to A1+B2+E.  The eigenvectors are 
columns of the unitary matrix 
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and the corresponding eigenvalues are the diagonal elements of , +=UHUH~
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Ashcroft found that the Fermi surface data were best fitted by the choices V3=0.0179 Ry  
V4=0.0562 Ry.  Thus the doubly degenerate level of E symmetry is lowest, below the 
Fermi energy, the B2 level is next, just above the Fermi energy, and the A1 level is highest.  
The bands are shown in the picture below, taken from Ashcroft’s thesis (N. W. Ashcroft, 
Phil. Mag. 8, 2055 (1962). 

Notice that this figure shows not 
only the predicted degeneracy of the 
lowest band at W, but also a nearby 
degeneracy, almost (but not exactly) at 
the Fermi energy, between the band that 
evolves downward from the B2 level in 
the direction W to X, and the upper of the 
two bands that evolves from the E level at 
W.  The wavevector along this line has 
the form ( )0,/,/2 yaak δππ +=

r
 where 

yδ , the y-component of , is a negative 
number.  The little group of the wavevector is C

δ
r

2v, whose character table is shown below.  
We see that the E doublet splits into B1 and B2, while the A1 and B2 singlets have both 
become A1 representations.  Thus the symmetry labels of the two bands which cross at a 
small negative yδ are A1 and B1.  Since they are different, the crossing is not forbidden by 
symmetry.  In the first set of notes, conditions for having a degeneracy are discussed.  For  
 

C2v E C2 (y) σv(zy) σv(xy)
linear  

functions,
rotations 

quadratic
functions

cubic 
functions 

Plane 
waves 

A1 +1 +1 +1 +1 y x2, y2, z2 y3, x2y, z2y (W1+W2)/√2
(W3+W4)/√2

A2 +1 +1 -1 -1 Ry xz xyz  

BB1 +1 -1 +1 -1 z, Rx zy zx2, zy2, zz2 (W3-W4)/√2 

BB2 +1 -1 -1 +1 x, Rz xy xx2, xy2, xz2 (W1-W2)/√2 

W 4 0 2 2    2A1+B1+B2



matrices like this which can be written as real matrices, two equations must be satisfied.  
In the 2 x 2 case, the conditions are equality of diagonal elements and vanishing of off-
diagonal.  At the W point, symmetry guarantees both.  For the band crossing we see 
between W and X, symmetry guarantees only the vanishing of the off-diagonal element, 
and equality of the diagonal elements happens at an accidental point along the line. 
 
 Our aim is now to ask how the k-points of double degeneracy evolve in k-space as 
we go away from the symmetry line connecting W and X.  In the absence of spin-orbit 
interaction, the Hamiltonian matrix is real and the two conditions can be satisfied along 
lines in k-space where the degeneracy is “accidentally” preserved.  To find these, we need 
to investigate in detail the bands near the K-point.  To do this, it is convenient to represent 
the Hamiltonian as H~ , that is, not in the original plane-wave basis, but in the basis of 
eigenstates of H at K.  The result is where  was already constructed, and 

is 
10
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When the free electron form of the kinetic energies is used, the matrix simplifies.  For 
example, the term ( ) 04321 4/ εεεεε −+++  becomes .  The terms linear in cancel 

because of the symmetric pattern of the four vectors 

2δ δ
r

iK
r

, shown in the first figure.  

Similarly, ( ) 4/4321 εεεε −−+  becomes ( ) yya Δ≡δπ /2 .  Then the Hamiltonian H~ , 
without approximation, is 
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We are using the upper case delta ( ( )δπ
rr

a/2=Δ ) to denote a scaled wavevector that has 
units of energy in Rydberg units.  The transformed matrix (7) is fully equivalent to Eq.(2).  
We now use this to study how degeneracies evolve in k

r
-space. 

 The first question is this.  According to matrix (7), what is the nature of the 
degenerate levels (3rd and 4th eigenstates) as the k

r
-vector Δ

r
 evolves away from the K 

point Δ=0?  To answer this requires degenerate perturbation theory.  The Schroedinger 
equation in matrix form is 
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The symbols α,β denote 2-component column vectors, the first two entries and the last two 
in the 4-vector eigenstates.  We want to solve this to order Δ2, that is, for energies close to 



the unperturbed energy  of the E doublet at k=K.  Therefore we can replace A-E by A4V− 0-
BB0, and write an effective 2 x 2 matrix, 
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Then the effective Hamiltonian matrix is 
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This is the approximate version of Eq.(7) relevant to the lower two states, with k not too 
far from the K point, and E not too far from .  The resulting formula for the eigenvalue 
is 
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This formula shows that, in order for the two states not to split, two conditions must be 
satisfied, namely and 0=ΔΔ zx ( ) ( )22

4
2

3
2

4 zxy VVV Δ−Δ=Δ− .  There are two ways for this to 

happen: (1) and 0=Δ x ( )2
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2
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4 / VVV xy −Δ=Δ .  
These define two different paths, both passing through K, on which the degenerate states 
remain “accidentally” degenerate.  Both of 
these paths lie on symmetry planes,   , 
or , where symmetry forces a v
off-diagonal element, since the two states that 
stick together now belong to different 
irreducible representations (they have oppo
parity under reflection in the symmetry plan
A schematic view of the two lines, (1) in red, 
lying in the plane k

0=Δ x

0=Δ z anishing 

site 
e. 

x=π/a and (2) in blue, lying 
in the plane kz=0, is shown to the right. What 
happens to wavefunctions kψ
evolve adiabatically on paths that surro
these lines of degeneracy?  The answer, as
expect from related problems such as the “Dirac points” in graphene, is that they change 
sign when the path goes once around a single line.  But if the path goes around two lines, 
there is no sign change.  These results can be seen explicitly by looking at the eigenstates
of effH

when they 
und 

 we 

 
~ , Eq.(8).  Consider a circular path surrounding one of the degeneracy lines

specific, the figure shows a line in the k
.  To be 

y-kz plane at a fixed positive displacement 
kx=2π/a+Δx from the K point which is the origin in this figure.  The equation of this circle 
is 0Δ=Δ x =const; φcos1Δ=Δ y , and φsin1Δ=Δ z .  The non-constant part of the 

matrix (8) is Hamiltonian 
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Here the constants are defined as ( )2
3

2
433 / VVVC −=  and ( )2

3
2

444 / VVVC −= .   How do the 
eigenvectors of this matrix evolve as the angle φ increases from 0 to 2π?  If γ also 
increases from 0 to 2π, then the eigenvectors change sign.  Issues of this kind are discussed 
in note 1.   Note that as φ increases from 0 to 2π, the off-diagonal elements evolve as the y-
component of a full circle, but it is not guaranteed that the diagonal elements evolve as the 
x-components of such a circle.  It depends on whether  is greater than  or not.  
This is the same as the question whether the radius of the circle is large enough that it 
surrounds the blue degeneracy line or not.  If yes to both, then there is a sign change of the 
eigenfunction.  The math is discussed in more detail in note 1.  Thus we see that the 
aluminum Bloch functions governed by Eq.(10) have a phase shift of π (Berry phase) if 
they evolve adiabatically around the line of degeneracy. 
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 The next question is a path like the one shown in the center of the figure above, 
where the path surrounds two different lines of degeneracy.  The equation of such a path is 

θcosΔ=Δ x ; φθ cossinΔ=Δ y , and φθ sinsinΔ=Δ z , where φ is the tilt angle of the 
path relative to the y axis, and θ is the path angle.  The non-constant part of the effective 
Hamiltonian matrix is 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

Δ+Δ−Δ
ΔΔ−Δ

=
φθθφθ

φθφθθ
2cossincos2sinsin

2sinsin2cossincos~
2

4
22

3

22
3

2
4

2, CC
CC

Heff .            (11) 

Because the matrix elements involve cos2φ  and sin2φ, they circulate an even number of 
times, so the sign of the eigenvector changes an even number of times, and the eigenvector 
returns to itself with no Berry phase after the circular path around two degeneracy lines is 
complete.  This result is not surprising, but it is reassuring to see it explicitly in a specific 
example. 
 
 Now let us return to the question of the accidental degeneracy of the A1 and B1 
states along the symmetry line connecting W to X.  The 4 x 4 Ashcroft-Harrison matrix 
Eq.(7) along this line is 
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The upper 2 x 2 subblock is the A1 subspace, and the third and fourth states are the B2 and 
BB1 states respectively.  The band crossing shown in Ashcroft’s picture is at negative , 
where the rising B

yΔ
1 state crosses the lower (falling) A1 state.  The eigenvalues are: 
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If we use a dimensionless wavevector η defined as ( )( 0,5,.1/2 ηπ += ak )
r

, instead of 
( ) yy a δπ /2=Δ which has dimensions of energy, then the point of accidental degeneracy is 
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about 15% of the way from K toward W.  A
shown to the right.  It is symmetr
around the W point, which is perhaps no
obvious from the picture of the Brillouin 
zone.  Going from W toward the left, k

 plot of these bands along this symmetry line is 
ic 

t 

r
 

evolves toward the X point at the cente
of the square face of the zone.  Going 
from W along the same path to the right,
k
r

 is outside the fi st Brillouin zone, but 
moving directly toward an X point at 
(2π/a)(1,1,0) = (2π/a)(0,0,1) lying on
face of a copy of the Brillouin zone.  
the bands plotted to the right, where the 
central wavevector is W, negative η ha
the B
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r real-symmetric matrices, accidental degeneracies 
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1 branch rising and intersecting the lower A1 branch; positive η goes from W toward 
the right hand copy of the X point, with the B2 branch rising and intersecting.  This change
of symmetry label from B1 to B2 occurs because the orientation of x and z is switched in 
this second copy of the square face, and the character table for C2v shows that B1 and B2 
are interchanged when x and z are interchanged.    
 It is a generic result that fo
require special choices of two independent parameters.  In 3-dimensional crystals, ther
are three directions in k

r
-space that can be varied.  Thus we should look for a line in k
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-

space where this accide tal degeneracy persists (or possibly more than one line, as we
found when we looked at the W-point E doublet.)   To find this line, we first need to rot
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This is still an exact transformation of the original Ashcroft-Harrison 4-band model.  At 
this point, our interest is to see what happens for small excursions 1Δ

r
away from the point 

of degeneracy at , for energies near that of the accidental doublet of 01 =Δ
r
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nd th
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~~H .  To first order 
is sufficient to truncate to a 2 x 2 matrix formed by crossing out rows and columns 1 and 3 
of Eq.(15).  The result is 
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This contains all the inform
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ation about the first-order splitting of the degeneracy.  The 
eigenvalues are 
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an 
 dispersion.  The shape of the constant energy surfaces is shown below in 

the plane , at constant increments of energy.  Note that the splitting does not 
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metry plane .   On this plane, the 4th eigenstates is odd 

 the other 3 are even.  This makes the off-diagonal 
truncation rigorously zero.  The remaining parameters and 
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This tells us that the degeneracy is lifted to first order in the ky and kz directions, giving 
anisotropic Dirac
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gnitude of the Fourier 

coefficients of the potential, 
only on the relative size  

43 /VV .  In direction, 
there is no splitting.  There is a 
line of Dirac points 
perpendicular to the square 
Brillouin zone faces.  In h

t depart from the sym
under reflection in the plane and
element in any 2 x 2 
must be tuned to make the diagonal elements equal, giving a line in x1Δ , y1Δ  space.  The 
energy of this line of Dirac points increas  to rd the Fermi energy as it moves away 
from the WX symmetry line (this happens when y1Δ  is negative) and pops through the 
Fermi surface, as noticed by Ashcroft.  
 Finally, let us look at eigenfunctions.  Using the particular Ashcroft choices of V
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and V4, we can write the 2 x 2 Hamiltonian in “real units” as 
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This is the form used for the energy contour plot.  If we define new variables, the matrix 
simplifies to 
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ath around the Dirac point is followed, and the eigenfunction acquires a 
Berry phase 
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Lines of constant δ are ellipses in the ky-kz plane.  As the angle ξ circulates from 0 to 2π,  
an elliptical p

)exp( πi± .   


