
Physics 556 Spring 2007                       Note 1                                        Philip B. Allen 
“Berry phase” of π under rotation by 2π in simple quantum systems. 

 
 A sign change of the wavefunction under cyclic adiabatic evolution was found by 
Longuet-Higgins in molecules.  The Hamiltonian is purely real and the wavefunctions 
can also be chosen purely real.  Berry’s fundamental contribution was to formulate a 
general way of understanding how the complex phase evolves when a wavefunction 
undergoes cyclic adiabatic evolution, and the sign change of real wavefunctions is a 
special case of a complex phase  with φie πφ ±= .  This phase change of  π occurs when 
the molecule has a two-dimensional configuration space that contains a point where the 
ground state is doubly degenerate, and when the adiabatic path surrounds this point.  The 
same phase change occurs in two-dimensional solids (graphene, for example) when the 
wavevector is altered adiabatically around a special k

r
-point in the 2-dimensional k

r
-

space where the Bloch state is doubly degenerate.  The mathematics, although 
elementary, can get quite confusing.  This note is intended to introduce the needed 
mathematics of 2 x 2 matrices, and subsequent notes will give examples. 

The archetype of eigenfunction sign change (phase change byπ) upon circulation 
by 2π is the system of matrix and eigenvectors 
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These eigenvectors, which are purely real, change sign on a complete rotation 
πψ 20 →→ .  The key property is not that the matrix elements  need to be exactly 

sine and cosine, but that they should evolve in sign in the same way as sine and cosine 
when the “angle” ψ revolves once.  This needs clarification, because, for example, ψ is 
not always a true physical angle. 
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Consider a general 2 x 2 real symmetric matrix,   
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Assume that the parameter φ lives in a physical space and can be evolved πφ 20 →→ .  
Also assume that the Hamiltonian matrix is invariant under such a full rotation by 2π.  
Thus f(φ) and g(φ) are periodic with period 2π.  Let us also assume they are smooth.   The 
eigenstates of (2) are those of Eq.(1), and change sign under πψ 20 →→ .  The problem 
is to figure out how the abstract parameter ψ evolves when the physical parameter φ 
undergoes a full rotation.  It may or may not increase by 2π.  There are many 
possibilities.  If either f(φ) or g(φ) has no sign change during πφ 20 →→ , then the 
evolution of ψ is 00 ψψψ →→ , that is, it returns to its original value with no complete 
circuit.  In this case, the rotation of φ by 2π does not yield a change of sign of the 
eigenvector (no Berry phase.)  The next possibility is that both f and g have two sign 
changes.  Since they are periodic and smooth, they cannot have an odd number of sign 
changes.  Both sine and cosine have two sign changes.  Then the angle ψ evolves 
as πψψψ 200 +→→ , one circulation, if the zeros of  f and g are interleaved on the path 

πφ 20 →→ , as are the zeros of sine and cosine.  This case gives a Berry phase of π.  



But if both zeros of f lie between the two zeros of g, or vice versa, then 00 ψψψ →→  
without circulation, and there is no Berry phase.  A general rule is not necessarily needed, 
since each case has to be examined separately anyway. 

A real Hamiltonian does not have to look real if the basis functions are complex.  
For example, the matrix (1) takes the form 
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after unitary transformation by ⎟⎟
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1 .  Once again, note that a full rotation of 

the elements of the matrix by 2π generates a rotation by π of the eigenfunctions.  The 
Berry phase is gauge-invariant, as Berry showed in full generality.  If the matrix is fully 
complex Hermitean, the equations become 
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Note that in this case, a phase change of π of the wavefunction follows from a phase 
change of 2π  in either angle θ or φ, but, if both angles change by  2π, then there is no 
phase change in the wavefunction.  The more complete analysis of Berry is needed to 
classify the behavior.  The subsequent notes will be concerned only with the case of real 
Hamiltonian matrices. 
 One of the important special cases of non-zero Berry phases concerns circulation 
on a path that surrounds a “point” where the Hamiltonian has a degeneracy.  The equation 
above shows an elementary fact about double degeneracy in a 2 x 2 matrix.  It is possible 
to have a double degeneracy only if three equations are simultaneously satisfied: 
(1) a=b, (2) c1=0, and (3) c2=0.  Usually this only happens if forced by some symmetry.  
When the Hamiltonian is not fundamentally complex but can be transformed to purely 
real, then c2 is automatically zero and only the first two equations need to be satisfied.  In 
3-dimensional solids, the k

r
-space is 3-dimensional.  This means that if there is a 

degeneracy at some point , then there is a two-dimensional space of angles evolving 

from , and one can expect to satisfy both Eqs.(1) and (2) for some special angles.  
Therefore, a line of double degeneracies is expected generically, often containing a point 
of symmetry-forced degeneracy, which might be considered the source of the line.  This 
is the topic of one of the other sets of notes. 
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