Physics 556 Spring 2007 -- HW \# 4 -- due Friday March 2
The Mn^{3+} ion occurs as a substitutional impurity for Al^{3+} in corundum and other insulators. It also forms the active ion in LaMnO_{3}, the "parent compound" of the "colossal magnetoresistance" materials. There are 4 d-electrons to distribute among 10 d orbitals. This can be done in $10 \times 9 \times 8 \times 7 / 4 \times 3 \times 2 \times 1=210$ ways. This means that the space of possible states contains 210 orthonormal many-electron wavefunctions, each most simply written as a Slater determinant. The Coulomb electron-electron interaction v couples these 210 states. To solve by degenerate perturbation theory, you diagonalize the 210×210 matrix of v . Using irreducible representations of the space and spin rotations, you can reduce this matrix almost to diagonal form. Here is the numbers game you play to figure out the "L-S terms" like ${ }^{5} \mathrm{D}$ which constitute the irreducible representations. You make a table whose cells enumerate all ways of making states with given values of M_{L} and M_{s}. If the complete table were shown there would be 210 entries. Only the upper left part needs to be explicitly constructed. The notation (u,d,2,-,-) means that the various single electron orbitals with m_{l} values ($2,1,0,-1,-2$) are populated "up, down, twice, empty, empty." This entry appears in the box $\mathrm{M}_{\mathrm{S}}=0, \mathrm{M}_{\mathrm{L}}=3$. This Slater determinant is not an eigenstate of ($\mathrm{L}, \mathrm{M}_{\mathrm{L}}, \mathrm{S}, \mathrm{M}_{\mathrm{S}}$), but contributes partially to all existing L-S terms with L greater than or equal to 3, and S greater than or equal to 0 . Your job is to figure out which terms exist. Here are two hints. In the last column, the "singlet I" term is indicated, because the state ($2,2,-,-,-$) can only belong to the term with $\mathrm{L}=6$ (S,P,D,F,G,H,I, .. are the labels for the $\mathrm{L}=0,1,2, \ldots$ orbital angular momenta.) It can't belong to L greater than 6 because there is no way to make M_{L} greater than 6 . It also must have $\mathrm{S}=0$ because there are no entries in the $\mathrm{M}_{\mathrm{s}}=1$ or 2 columns. Cells lower in the table start to have lots of entries, especially the $\mathrm{M}_{\mathrm{S}}=0$ column, and less so the other columns. The first entry in the $\mathrm{M}_{\mathrm{s}}=2$ column is shown. This has to belong to the Hund's rule ground state ${ }^{5} \mathrm{D}$. This "term" has 25fold degeneracy before spin-orbit effects are included. Please (1) figure out all the allowed "terms," (2) verify that these terms contain 210 states, and (3) describe the structure of the reduced v matrix.

$\mathrm{Mn}^{3+}\left(\mathrm{d}^{4}\right)$	$\mathrm{M}_{\mathrm{S}}=2$	$\mathrm{M}_{\mathrm{S}}=1$		$\mathrm{M}_{\mathrm{S}}=0$
$\mathrm{M}_{\mathrm{L}}=6$			$(2,2,-,-,-)$	${ }^{1} \mathrm{I}$
$\mathrm{M}_{\mathrm{L}}=5$				
$\mathrm{M}_{\mathrm{L}}=4$				
$\mathrm{M}_{\mathrm{L}}=3$				${ }^{1} \mathrm{D}$
$\mathrm{M}_{\mathrm{L}}=2$				
$\mathrm{M}_{\mathrm{L}}=1$	$\mathrm{u}, \mathrm{u}, \mathrm{u}, \mathrm{u},-)$			

