PHY 556 Spring 2007 Homework #5 due Monday Mar. 26, 2007

- 1. Lax p. 105. By "independent" Lax means "linearly independent."
- 3.1.1. Given a group G of g elements $A_1, A_2, ..., A_g$ and a sufficiently arbitrary basis function Ψ such that the set of g basis functions $\Psi_i = A_i \Psi$ is an independent set, show that the Ψ_i form a basis for a representation

$$R \Psi_i = \sum \Psi_i D_{ii}^{\text{reg}}(R)$$

known as the regular representation, whose elements are 1 or 0 with

$$D_{ij}^{\text{reg}}(R) = \delta(R, A_i A_i^{-1})$$

- 2. Lax p. 106.
- **3.1.2.** (a) Show that for the regular representation

$$\chi^{\text{reg}}(E) = g, \qquad \chi^{\text{reg}}(R) = 0 \text{ for } R \neq E.$$

- (b) Show that representation Γ_i of dimension l_i is contained l_i times in the regular representation.
- (c) Prove Burnside's theorem, $\sum (l_i)^2 = g$ (Eq. 1.5.9).
- 3. Lax p. 131
- **4.3.2.** Show that a measurement of electrical conductivity in a crystal of cubic symmetry is independent of the orientation of the crystal. Is this also true of optical absorption?
- 4. Lax p. 131
- 4.3.3. Show that the presence of a reflection plane containing the principal axis forces c to equal 0 in Eq. 4.3.10.
- Eq. 4.3.10 applies correctly to the group C_3 , not C_{3v} , as this problem clarifies.

$$\begin{bmatrix}
 a & c & 0 \\
 -c & a & 0 \\
 0 & 0 & b
\end{bmatrix}$$
(4.3.10)