Phy 556 HW 6, answer to problem 2 - vibrations of a 2-d square molecule AB_{4}

The potential energy is $U=U_{1}+U_{2}$, where
$U_{1}=\frac{1}{2} K_{1}\left[\left(x_{1}-x_{0}\right)^{2}+\left(y_{2}-y_{0}\right)^{2}+\left(x_{3}-x_{0}\right)^{2}+\left(y_{4}-y_{0}\right)^{2}\right]$
$U_{2}=\frac{1}{4} K_{2}\left[\left(x_{2}-y_{2}-x_{1}+y_{1}\right)^{2}+\left(x_{3}+y_{3}-x_{2}-y_{2}\right)^{2}+\left(x_{4}-y_{4}-x_{3}+y_{3}\right)^{2}+\left(x_{1}+y_{1}-x_{4}-y_{4}\right)^{2}\right]$

Newton's laws are expressed with mass-weighted coordinates as $\frac{d^{2}}{d t^{2}}|s\rangle=-\hat{D}|s\rangle$, where $\hat{D}=\hat{D}_{1}+\hat{D}_{2}$ and the 10 -vector and 10×10 matrices are

$$
|s\rangle=\left(\begin{array}{c}
\sqrt{M} x_{0} \\
\sqrt{M} y_{0} \\
\sqrt{m} x_{1} \\
\sqrt{m} y_{1} \\
\sqrt{m} x_{2} \\
\sqrt{m} y_{2} \\
\sqrt{m} x_{3} \\
\sqrt{m} y_{3} \\
\sqrt{m} x_{4} \\
\sqrt{m} y_{4}
\end{array}\right) \quad \hat{D}_{1}=\frac{K_{1}}{\sqrt{m M}}\left(\begin{array}{cccccccccc}
2 r & 0 & -1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 2 r & 0 & 0 & 0 & -1 & 0 & 0 & 0 & -1 \\
-1 & 0 & 1 / r & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 1 / r & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & 1 / r & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 / r
\end{array}\right) \text { with } r=\sqrt{\frac{m}{M}}
$$

The squared frequencies ω^{2} are the eigenvalues of the full matrix $\hat{D}=\hat{D}_{1}+\hat{D}_{2}$. Group theory tells us some of the eigenvectors. The character table for the group $C_{4 v}$ is shown below to the left, and also, to the right, the numbering system for the four atoms of mass m. These atoms form a basis for the "permutation representation" which reduces to $A_{1}+B_{2}+E$. Basis functions for A_{1} and B_{2} are shown to the right in the top row, and for the E doublet, to the right in the bottom row. The specification B_{2} (rather than B_{1}) derives from an (arbitrary) choice that σ_{v} planes pass through atoms and σ_{d} planes pass between them.

The displacements of atoms ($|u\rangle$, like $|s\rangle$ except without the mass factor) are the basis for the 10-dimensional representation which transforms like the direct product of the 2vector with the permutation representation (of all 5 atoms). A 2 -vector transforms like E . The central atom does not mix with the others under rotations, and thus is an A_{1} subspace. The displacements of the central atom thus transform as E . The other 8 degrees of freedom transform thus as $E x\left(A_{1}+B_{2}+E\right)$. The representations $E \times A_{1}$ and $E \times B_{2}$ are both E representations, which consist of attaching x or y displacements to the atoms in the A_{1} and B_{2} patterns shown in the figure above. These E basis functions can be turned into normalized $|s\rangle$-vector basis functions most simply as follows
$|x 1\rangle=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right),|x 2\rangle=\frac{1}{2}\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0\end{array}\right)$, and $|x 3\rangle=\frac{1}{2}\left(\begin{array}{c}0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ -1 \\ 0\end{array}\right)$ and similar for $|y 1\rangle,|y 2\rangle$, and $|y 3\rangle$, except
shifted down one entry to change x components into y components. The numbering 1,2,3 is arbitrary. If we take the 6 vectors just listed and compute $\langle\alpha| \hat{D}|\beta\rangle$, the resulting 6×6 matrix is guaranteed to block diagonalize into two identical 3×3 matrices, one for x components and one for y. But we can further simplify because we also are guaranteed that one eigenvector of each sub-block has eigenvalue 0 and corresponds to the uniform displacement in the x (or y) direction of the whole molecule. The uniform x displacement is $|x 0\rangle=\sqrt{M}|x 1\rangle+2 \sqrt{m}|x 2\rangle$. It is easy to verify that both $\hat{D}_{1}|x 0\rangle$ and $\hat{D}_{2}|x 0\rangle$ are zero. We then need to choose two basis functions orthogonal to $|x 0\rangle$. The simplest choice is $|x \alpha\rangle=\langle 2 \sqrt{m} \mid x 1\rangle-\sqrt{M}|x 2\rangle] / \sqrt{M+4 m}$ and $|x \beta\rangle=|x 3\rangle$. Finally, we
compute the 2×2 matrices $\langle x \alpha| \hat{D}|x \beta\rangle$ (the y-version is of course identical.) The answer is

$$
\left[\hat{D}_{1}\right]_{E^{\prime} x}=\frac{K_{1}}{2 m}\left(\begin{array}{cc}
\frac{M+4 m}{M} & -\sqrt{\frac{M+4 m}{M}} \\
-\sqrt{\frac{M+4 m}{M}} & 1
\end{array}\right) \text { and }\left[\hat{D}_{2}\right]_{E^{\prime} x}=\frac{2 K_{2}}{m}\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) .
$$

Note that each of these two sub-systems has simple eigenvectors and one null eigenvalue. When the two spring constants K_{1} and K_{2} are both non-zero, the system is stable and the eigenvectors and eigenvalues are found by solving 2×2 matrices with no additional symmetry.

Finally, there are 4 more states belonging to $\mathrm{Ex} \mathrm{E}=\mathrm{A}_{1}+\mathrm{A}_{2}+\mathrm{B}_{1}+\mathrm{B}_{2}$, involving only the 4 outer masses m (the central mass M is stationary.) It is easy to "guess" the eigenvectors, and assign symmetry labels by the transformation properties listed in the character table. The eigenvectors are shown pictorially, and can thus be constructed algebraically.

A_{2} is a pure rotation with eigenvalue $0 . \mathrm{A}_{1}$ is an eigenvector of \hat{D}_{1} with eigenvalue K_{1} / m, and of \hat{D}_{2} with eigenvalue $2 K_{2} / m$, so the frequency is $\omega^{2}=\left(K_{1}+2 K_{2}\right) / m . \mathrm{B}_{1}$ is an eigenvector of \hat{D}_{1} with eigenvalue K_{1} / m, and of \hat{D}_{2} with eigenvalue 0 , so the frequency is $\omega^{2}=K_{1} / m . \mathrm{B}_{2}$ is an eigenvector of \hat{D}_{1} with eigenvalue 0 , and of \hat{D}_{2} with eigenvalue $2 K_{2} / m$, so the frequency is $\omega^{2}=2 K_{2} / m$.

