Physics 555 Fall 1999 2×2 Matrix algebra

In BCS theory we need eigenvalues and eigenvectors of a matrix of the type

$$\hat{M} = \left(\begin{array}{cc} \xi & \Delta \\ \Delta^* & -\xi \end{array}\right)$$

where $\xi = \epsilon_k - \mu$ and Δ is the complex gap, $|\Delta| \exp(i\phi)$. Clearly the eigenvalues are $\pm E$ where $E = \sqrt{\xi^2 + \Delta^2}$. It is convenient to express this matrix in terms of the Pauli matrices

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

The matrix becomes

$$\hat{M} = E(\vec{r} \cdot \vec{\sigma})$$

where the unit vector \vec{r} is given by

$$\vec{r} = (\sin\theta\cos\phi, \sin\theta\sin\phi, \cos\theta),$$

and θ is defined in the picture below.

The matrix $\vec{r} \cdot \vec{\sigma}$ can be rotated until \vec{r} is \hat{z} . The eigenvalues are thus ± 1 . The rotation matrix U is defined as

$$\sigma_z = U(\vec{r} \cdot \vec{\sigma})U^{\dagger}$$

and is the product of two simple rotations, U_2U_1 , where

$$U_1 = \begin{pmatrix} e^{i\phi/2} & 0\\ 0 & e^{-i\phi/2} \end{pmatrix} = e^{i(\phi/2)\sigma_z} \quad U_2 = \begin{pmatrix} \cos\frac{\theta}{2} & \sin\frac{\theta}{2}\\ -\sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{pmatrix} = e^{i(\theta/2)\sigma_y}$$

The rotation U_1 is around the z-axis by angle $-\phi$. This causes the vector \vec{r} to lie in the xz plane. The rotation U_2 is around the y axis by angle $-\theta$. This causes the vector \vec{r} to line up with the z axis. The resulting conjugate rotation matrix U^{\dagger}

$$U^{\dagger} = \begin{pmatrix} \cos\frac{\theta}{2}e^{-i\phi/2} & -\sin\frac{\theta}{2}e^{-i\phi/2} \\ \sin\frac{\theta}{2}e^{i\phi/2} & \cos\frac{\theta}{2}e^{i\phi/2} \end{pmatrix}$$

contains as its columns the two orthonormal eigenvectors $|1\rangle$ and $|-1\rangle$ of $\vec{r} \cdot \vec{\sigma}$. The eigenvectors could, of course, each be multiplied by an additional overall phase factor $\exp(i\psi_1)$ and $\exp(i\psi_{-1})$.