Physics 555 Fall 19992×2 Matrix algebra

In BCS theory we need eigenvalues and eigenvectors of a matrix of the type

$$
\hat{M}=\left(\begin{array}{cc}
\xi & \Delta \\
\Delta^{*} & -\xi
\end{array}\right)
$$

where $\xi=\epsilon_{k}-\mu$ and Δ is the complex gap, $|\Delta| \exp (i \phi)$. Clearly the eigenvalues are $\pm E$ where $E=\sqrt{\xi^{2}+\Delta^{2}}$. It is convenient to express this matrix in terms of the Pauli matrices

$$
\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma_{y}=\left(\begin{array}{rr}
0 & -i \\
i & 0
\end{array}\right) \quad \sigma_{z}=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)
$$

The matrix becomes

$$
\hat{M}=E(\vec{r} \cdot \vec{\sigma})
$$

where the unit vector \vec{r} is given by

$$
\vec{r}=(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)
$$

and θ is defined in the picture below.

The matrix $\vec{r} \cdot \vec{\sigma}$ can be rotated until \vec{r} is \hat{z}. The eigenvalues are thus ± 1. The rotation matrix U is defined as

$$
\sigma_{z}=U(\vec{r} \cdot \vec{\sigma}) U^{\dagger}
$$

and is the product of two simple rotations, $U_{2} U_{1}$, where

$$
U_{1}=\left(\begin{array}{lr}
e^{i \phi / 2} & 0 \\
0 & e^{-i \phi / 2}
\end{array}\right)=e^{i(\phi / 2) \sigma_{z}} \quad U_{2}=\left(\begin{array}{ll}
\cos \frac{\theta}{2} & \sin \frac{\theta}{2} \\
-\sin \frac{\theta}{2} & \cos \frac{\theta}{2}
\end{array}\right)=e^{i(\theta / 2) \sigma_{y}} .
$$

The rotation U_{1} is around the z-axis by angle $-\phi$. This causes the vector \vec{r} to lie in the $x z$ plane. The rotation U_{2} is around the y axis by angle $-\theta$. This causes the vector \vec{r} to line up with the z axis. The resulting conjugate rotation matrix U^{\dagger}

$$
U^{\dagger}=\left(\begin{array}{rr}
\cos \frac{\theta}{2} e^{-i \phi / 2} & -\sin \frac{\theta}{2} e^{-i \phi / 2} \\
\sin \frac{\theta}{2} e^{i \phi / 2} & \cos \frac{\theta}{2} e^{i \phi / 2}
\end{array}\right)
$$

contains as its columns the two orthonormal eigenvectors $\mid 1>$ and $\mid-1>$ of $\vec{r} \cdot \vec{\sigma}$. The eigenvectors could, of course, each be multiplied by an additional overall phase factor $\exp \left(i \psi_{1}\right)$ and $\exp \left(i \psi_{-1}\right)$.

