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High T, superconductors at room temperature and above
have resistivities rising less rapidly with T than Bloch-
Grimeisen theory predicts. Critical discussion of seven
possible mechanisms is given. Three mechanisms (anharmon-
tetty, Fermi smearing, T-dependent energy bands) are
consistent with Boltazmann theory, and four (localization,
Debye-Waller effects, Phonon drag and ineffectiveness, and
non-classical conduction channels) are not. It is argued
that the last mechanism is the most plausible.

I. THE SATURATION PHENOMENON VERSUS NORMAI. METALLIC
RESISTIVITY

Figure 1 shows the electrical resistivity of Nb,Sn as a
function of temperature (Woodard and Cody, 1965.). “The
shape of p(T) departs strongly from Bloch-Grilneisen theory
(Ziman, 1960). It was pointed out by Fisk and Lawson (1973)
that the same shape of p(T) is seen in nearly all high TC
d-band metals (and other highly resistive metals as well) ,
whereas low T, materials tend to have a more normal behavior.
Sometimes the effect is called a "bulge" - implying that
the anomalous feature is excess resistivity for temperatures
near 6p. This seems to me incorrect; if there were only a
bulge, then p(T) above 0y should be normal, i.e., (a) nearly
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linear in T and (b) extrapolating back through p,s the
residual resistance. This second constraint - that the
intercept is fixed -~ is often forgotten. It follows from
the basic variational solution of the Bloch~Boltzmann
equation (Allen, 1978),
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FIGURE 1. Resistivity of‘NbSSn versus temperature. Dots
are data of D.W. Woodard and G.D. Cody (Phys. Rev. 136,
Al66 (1964).) The solid line is a fit using eq. (6) with
0, = L3.5uQcm and py, = 163uGem.  Assuming Ay, = A = 1.7,
the fitted value ofM(n/m) £ gives a Drude plasma frequency
3.7 eV which compares well gith 3.4 eV caleulated by
L.F. Mattheiss et al. (Phys. Rev. Bl?, (1978).) The dashed
eurve is p. , the Boltzmann resistivity caleulated from
eqs. (Z-4)$ug%ng the phonon density of states of P. Schweiss
et al. (in "Superconductivity in d- and f-Band Metals, "
D.H. Douglagss, ed., Plenum, New York, 1976; p. 189) for the
shape of o (@), The corresponding mean free path at
300K is 79, “using the Fermi velocity of Mattheiss et al.
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where N(o) is the density of states at the Fermi surface,
<v, "> is the mean square, x-component of electron velocity at
the Fermi surface, and a® F(Q) is a function very similar to
uZF(Q) in superconductiv1%y, with a slightly different
weighting used in the Fermi surface average. At high tem~
peratures (T > 0p) the factor in brackets in eq. (4) be-
comes unity and Xtr(T) achieves its maximum value, a
constant, A__, very similar to A in superconductivity. A
gimplified version of equation (1) valid at T=0 and at

T > 8y is

(T) P, + oyl (5)

pideal M 1

where py involves two coupling constants, At and (n/m)eff—l
From eq. (5) it follows that o(T) of Nb.8n (fig. 1)
is badly amiss at high T. One cannot tell “(without a
detailed theory) whether there is éxcess resistivity in the
"bulge" region, but no detailed theory at all is required to
see that at high T, p(T) falls below the required linear
behavior. A better name for the phenomenon is "deviation
from linearity" (d.f.%.), which carries no prejudice as to
the cause. Fisk and Webb (1976) have introduced a more
descriptive term, "saturation." This word conveys the
prejudice (which I think is correct) that the downward turn
in p(T) represents the approach to Mott's (1971) maximum
metallic resistivity (or minimum metallic conductivity),
Pax = l/om. , and is associated with very short electron
mean free paths (£). Unfortunately we have no clear micro-
scopic picture for the conduction mechanism in Mott's
regime. Mooij (1973) has assembled much evidence that in
d-band alloys, p saturates at a value Prax ~ 150uQ cm.

IT. PARALLEL RESISTOR FORMULA

An empirical formula used by Wiesmann et al. (1977) fits
a great deal of data.

1/0(T) = /0 40a1 (D + 10 ax (6)
If eq. (5) is used for Pideal’ then there are three adjust-
able parameters. TFor Al5‘ma als, p__ is found to be

v 1509 cm. Only p  varies signifi@gétly when eq. (6) is
fit to data for the same material with varying degrees of
radiation damage (Gurvitch, 1978). The electron-phonon
parameter oy derived from fitting (6) to experiment, agrees
with independent theoretical estimates of oy by Allen et al.
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(1978a) for Nb,AL and Nb3Ge. These estimates consist of
calculating (n?m) ff from band theory and estimating

AN A, taking A from T . This procedure was used success—
fufly by Chakraborty etCal. (1976) for elements like Nb
where "saturation" is not seen at 300K and below. Infrared
experiments (Mattheiss et aql., 1978) confirm the value of
(n/m) . Detailed theoretical calculations (Pinski et al.
l978)eo‘ A and Ay, for Nb and Pd show that these two
numbers differ by only 10%. TFrom the theory used to
estimate pq it is found that if Boltzmann theory worked,

% at 300K would be 3-4R in Nb,Ge and NbsAL.

The success of eq. (6) suggests that it may be more than
an accident. Perhaps an extra conduction channel parallel
to the Boltzmann channel is physically real. If so, it
should be a general occurrence, available in all metals.
This does not contradict the data. In elements not showing
saturation, pideal is sufficiently small compared to
150uf cm that it Is difficult or impossible to detect the
"parallel resistor."

IITI. WHAT IS BLOCH-BOLTZMANN THEORY?

The first step is to understand thoroughly the ordinary
theory of metallic conduction formulated by Felix Bloch
(1928). The Bloch-Boltzmann equation for electrons in
steady-state in a dc external electric field E is

- e By (-3f/0¢)) = 2, Qe P 7

where the distribution function F, for electrons in state
|k> with velocity Avy = Bek/ak is f(g) + ¢p (—Bf/Bek) and
f is the Fermi function. The scattering operator Qk y is
the sum of terms for impurity scattering, phonon sca%tering,
and electron-electron (Coulomb) scattering. This equation
has been linearized, which means that it only gives the
Ohmic part of the current. This equation rests on four
assumptions:

(A) The E field and the currents are described by the
semiclassical theory. That is, the E field "accelerates"
electrons according to k = -eE/fi, and the current is caused
by the resulting excess of electrons with a band velocity
pointing along E,

j = ~e 1Z< Yk ¢k (—af/3€k) (8)
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(B) Scattering events are statistically independent of
each other; they are separated by enough wavelengths that
the electron "recovers" from previous collisions before
experiencing the next one. For free electrons the criterion
is k2 >> 1.

(¢) The phonon part of the collision operator is calcu-
lated using only the first term in the Taylor series

-y [ £y .
Kop = 2 Tug UV + 5 wpup s V0V 4 L] )

where u, is the displacement of the th atom and V is the
crystal potential. Specifically, the phonon part of Q is
second order in (u*VV). Higher powers of (u:VV) would give
effects higher order in (k_2)~1 and so are omitted according
to (B). Higher order terms in the series (8), treated to
second order in perturbation theory, will give corrections
of order (u/a)2 and higher; these are omitted.

(D) The phonons are assumed to be in thermal equilibrium.

In spite of the four assumptions, this theory is
remarkably sophisticated and includes many processes to
infinite order of perturbation. This sometimes surprises
theorists unfamiliar with the details. Feynman diagrams
provide a classification scheme which is helpful (to some)
in understanding the content and limitations of eq. (7).
Figure 2 shows representative graphs which are completely
included in eq. (7). 1t is surprising that no
renormalization effects occur to alter eq. (7) at the level
of the graphs depicted in fig. 2. The most careful proof is
by Holstein (1964). He found that for ac fields, when
T < 8p and w < wp, renormalization effects do occur, but
they cancel as w + o.

Representative graphs which are not summed by eq. (7)
are shown in fig. 3. Each graph has been classified
according to which of the four assumptions A-D is violated.
Graphs A will be discussed in Sec. XI, B in VII, C in VIITI,
and D in IX.

IV. ANHARMONICITY

There are two effects within Boltzmann theory which can
cause the "ideal" resistivity to depart from linearity at
high temperature. Unfortunately, they don't seem sufficient
to explain saturation. They are described in this section
and the next. The simplest is the fact that phonon fre-
quencies change with temperature partly because of thermal
expansion. For convenience we call this "anharmonicity,"
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FIGURE 2. Representative Feynmman graphs summed in
Bloch-Boltzmann theory. Subsets A,B,C are zeroth, first,
and second-order graphs respectively; D shows a few of the
fifth-order graphs which are summed.
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FIGURE 3. Feynman graphs omitted in Bloch-Boltzmann
theory. Subsets 4,B,C,D are the lowest-order graphs
omitted because of assumptions A,B,C,D. In the special
cases (n'=n) or (ny=ng=n,) or (m;=my and m,=m,), graphs 4

4 "2 34
reduce to graphs of fig. 2.
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even though the mechanism is possibly not anharmonic
coupling. To estimate the importance of anharmonicity,
Allen et al. (1976) followed McMillan (1968) and wrote

Moy = n/M<w?s (10)

Thus the effect of anharmonicity on p(T) at high T is
through a factor <w®>~l, Normal behavior is for <w?> to
diminish with increasing T, causing p(T) to rise above
linearity. However, many Al5 metals have anomalous
anharmonic behavior, and <w*> is known to increase. Tt has
been estimated that at most 1/3 of the d.f.%. can be
explained this way (Bader and Fradin, 1976).

V. FERMI SMEARING

Eq. (8) can be written

o(m = [ de ole,m) (-3£/3¢) (11)
(e,T) = T e’v, 2 8¢ ) (12)
o(e, = : e Vg Tx 8(g e

where Ty 18 defined by the relation ¢, = —e v ‘£ T, and E is

in the 'x direction. Mott (1936) pointed out that in d-band
systems, o(e,T) may vary with € on a scale k,T, so that
(-9f/3e) in (11) may not be replaced by 8(e). The resulting
corrections are called "Mott Fermi smearing." The effect

on the T-dependence of p can be significant when energy bands
are narrow and the Fermi velocity changes rapidly with e.
Many authors have made model calculations purporting to show
how saturation in Al5 metals can be explained this way
(Cohen, Cody, and Halloran, 1967; Bader and Fradin, 1976;
Nekayama and Tsuneto, 1978; Ting, Synder, and Williamson,
1979). Unfortunately it is extremely difficult to calculate
this effect, and most of the existing literature on the
subject is wrong. A reasonable procedure (Allen, 1976)
starts by defining a density of state N(e), mean square
velocity v 2(8), and scattering rate t(e) through the
relations

N(e) = ¢ é(ekme) (13)
k
N(e)v 2(e) =% v 2 §(e, —¢) (14)
X k kx k
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N(e)vX (e)t(e) = o(e,T)/e (15)

Calculating t(e) requires solving Boltzmann's equation.

It is not permissible to use the standard variational
solution which assumes t(e) = const. Roughly speaking,
1/1t(e) behaves as N(e) with some additional factors which
(hopefully!) vary less rapidly wlth €. Note that N(eg)
eancels out of o(e,T) leaving Vi (e) as the parameter to
be smeared. Attempted calculations along these lines
(Laubitz et al., 1977; Allen and Chakraborty, 1978; Pinski
et al., 1978) have been moderately successful for the
elements. There is no doubt that the effect on p. can
be significant. However, it is hard to believe tﬁat

Fermi smearing -~ a complex and band-structure~dependent
effect, can account for the simple and regular behavior of
so many materials. Why should p(T) not sometimes bend
upwards, or else bend too far in the downwards direction?

VI. ALTERATIONS OF BAND STRUCTURE WITH T

Two suggestions are sometimes made based on intuitive
plausibility: (i) putting a T~dependent band structure
into eq. (7), or (ii) introducting a phenomenological life-
time broadening (Testardi and Mattheiss, 1978; Wiesmann
et al., 1978; Greig and Morgan, 1973) in addition to the
thermal broadening of eqs. (11-15). The latter receives
some support from a CPA theory by Chen et agl. (1972); also
Brouers (1978), but this theory omits electron-hole inter-
actions and deals only with a single band. A rigorous
theory (making neither of these simplifications, but valid
only for weak disorder) has been given by Chakraborty and
Allen (1978, 1979). Their theory can account for T dependent
shifts in o(w) at optical frequencies in semiconductors, and
gives a generalization of Boltzmann theory in the de¢ limit
(discussed further in sec. XI.). Unfortunately their theory
is in no way equivalent to a modified version of eq. (7).

No justification is found for either intuitive procedure,
except that for the trivial effects of thermal expansion,

a T-dependent band structure can be used in (7). This latter
is a small effect, less significant than the thermal shifts
of phonon frequencies already discussed in sec. IV.
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VII. CONNECTION WITH ANDERSON LOCALIZATION

The remaining sections deal with attempts to explain
saturation outside the framework of Bloch-Boltzmann theory.
0f the omitted graphs in fig. 3, the hardest to deal with
are those of 3B. They contribute to p terms which are
higher order in (kFQ)'l. It is known (Langer and Neal,
1966) that a straightforward expansion of o in powers of
(kFl)"l has logarithmically divergent coefficients in third
order and higher. There is as yet no accepted method for
solving this problem. It seems likely that the difficulties
with perturbation theory relate to an actual physical
singularity, the onset of Anderson localization (Anderson,
1958; Thouless, 1974). .This subject remains difficult and
controversial. Only simple models involving a single band
have been studied, whereas Al5 metals have many overlapping
bands. At T=0 it is generally agreed that o will vanish
above a critical value of the disorder, dc‘ There is some
controversy about whether ¢ vanishes continuously (as
(d ~d)P for some positive P) or discontinuously (as
6(d.~d)). Older evidence suggested the latter, with the
value of ¢ just below dC being o in’ This strongly
suggests a connection between saturation and localization.
More recent evidence suggests the former, which seems
incompatible with saturation, i.e. there is no hint of
an excess conductivity before localization occurs.

The situation is even less clear at finite temperature.
For d>dc, either thermally assisted hopping or activation
above a mobility edge will allow ¢ to be finite. For d<d,,
little work has been done. The data of fig. 1 suggest
the question whether vibrational disorder can cause localiza-
tion, and if so how will o(T) behave above and below the
threshold. In summary, there is yet not much evidence for
a close connection between saturation and localization.

VIII. DEBYE-WALLER FACTORS

It has been proposed at various times that when an
electron scatters from the atomic displacement, a Debye-
Waller factor should enter, weakening the strength of the
scattering potential, just as for x-ray scattering. This
is undoubtedly true, and is described diagramatically by
dressing the electron-phonon vertex by additional closed
phonon loops which represent virtual emission and reabsorp-
tion of the same phonon. (fig. 3C, first two). Clearly
this will give a diminished high-T resistivity, as observed
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experimentally (Rossiter, 1977; Visscher, 1978). There are
two difficulties. First, the Debye-Waller expansion
parameter is (u/a), a number which behaves roughly the same
in all metals, approaching the Lindemann limit at melting.
There is nothing to discriminate strong-scattering metals
where saturation is seen from weak-scattering metals like
Cu or AL where it is not. Second, there is a theoretical
objection (Sham and Ziman, 1963) that multi-phonon
scattering enters in the same order of perturbation theory
as Debye-Waller effects, (fig. 3C, second two) and clearly
enhance the resistivity. The degree to which the two
effects cancel is unknown. Speculations of exact cancella-
tion seem unfounded. It is difficult to estimate the
effects well and the matter awaits further theoretical
development.

IX. PHONON DRAG

It is known that in a metal carrying a current, the
phonons are not exactly in thermal equilibrium. In an
idealized case one can imagine that the phonons are dragged
with the current, so that in the rest~frame of the drifting
electrons, the phonons and electrons are both close to
thermal equilibrium. Fewer current-degrading collisions
occur and the conductivity is enhanced (Ziman, 1960). This
picture applies only if phonons decouple from everything
except electrons. In actuality, phonons couple to each
other (by anharmonic coupling) and to defects, allowing
relaxation toward equilibrium. Thus phonon drag is
expected to be significant only in pure metals at low
temperatures where anharmonic and defect effects are small.
A theory is achieved by generalizing eq. (7) to two
coupled Boltzmann equations, one for electrons and one
for phonons. Holstein (1964) has shown that these coupled
Boltzmann equations can be derived by summing up the
additional graphs of fig. 3D.

X. PHONON INEFFECTIVENESS

Morton et al. (1978) and Cote and Meisel (1978) have
independently proposed the hypothesis that phonons with
Q% < 1 become ineffective scatterers. Little justification
has been offered except that it gives an economical explana-
tion for the resistivity data and for the degradation of Te
by radiation damage. Two things are bothersome. First, in



Theory of Resistivity “Saturation’’ 301

the spirit of Mott's p , saturation should be independent
of which mechanism causés the principal scattering (defects,
phonons, or Coulomb scattering, whereas "phonon ineffective-
ness'" treats only the phonon mechanism. Second, amorphous
s-p metals have T, values comparable to their crystalline
counterparts and tunneling shows excess strength in uZF(Q)
at low Q. TIf phonon ineffectiveness applies, one would
expect the small Q phonons with small Q to have a deficiency
of weight in alF.

Both groups proposing phonon ineffectiveness have
invoked Pippard's (1955) work on ultrasonic attenuation.
Pippard showed that if the impressed phonon has QL < 1,
then electrons are ineffective in degrading the ultrasonic
energy. This is because electrons are dragged by the
impressed phonon wave. The conmection between Pippard's
ideas and saturation seems obscure. The thermal phonons
present during electrical conduction are incoherent and
camnot all drag electrons. It seems to me that if there is
truth in the idea of '"phonon ineffectiveness," it is
contained in the phonon drag processes of sec. IX.

XI. BEYOND SEMICLASSICAL THEORY

Finally we turn to the graphs of fig. 3A. These graphs
were summed in the generalized Boltzmann equation of
Chakraborty and Allen (1978, 1979), as a solution to the
problem of how to include temperature~dependent electron
bands into conductivity theory. Both the semiclassical
acceleration equation and the semiclassical current (eq. 8)
must be supplemented by non-~classical terms which give the
interband dipole transitions and the interband currents.
These graphs by themselves would give significant contribu-
tion to o(w) only for values of w in the interband energy
range. However, when summed to high order along with the
graphs of fig. 2, a new channel for d.c. conduction is
found. The resulting theory, when solved to first order in
the new effects, has exactly the form of the parallel
resistor model, eq. (6). The "shunt resistor" 0
represents the new dc current channel available whon inter—
band currents, interband excitation by the E field, and
interband scattering are allowed to mix with the usual
semiclassical processes. Disorder both allows and inhibits
these processes. For example, a virtual interband excitation
by the E field could not affect the dc current unless a
virtual interband scattering event were available to restore
energy conservation. On the other hand, the amount of
current carried in this fashion is limited by collisions just
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as in the semiclassical case. The expression obtained for
o /p is quite complicated. Collisions appear in
botﬂ numerator and denominator, leaving a result which is
formally independent of the strength of the, disorder. The
order of magnitude of the term is o _, ~ nhe”/mE_ where E
is a band separation. This has them%%ght size to account
for saturation. Comparing with Boltzmann conduction the
ratio is h/tE,, similar to 1/k_ 4. However, this is only

a first order solution. It is not clear why the pheno-
menological eq. (6) should be successful in the range
where the second term dominates. Why do higher order terms
not appear?

XIT. FINAL COMMENTS

On studying "saturation" we have the double misfortune
of a complicated physical parameter (conductivity) and a
complicated system (ALl5 metals). However, we have the good
fortune of a clean experiment where disorder can be tuned
in a simple reversible way (temperature) and where the
results, although unexplained, are simple (eq. 7). It is
my prejudice that none of the proposed explanations, except
the non-classical channel of sec. XI, have the requisite
combination of universality and microscopic validity.

If the theory of sec. XI is the correct explanation , we are
still lacking a complete or adequately simple picture of
the phenomenon.

There is a simple verbal description (V. Heine, private
communication) of conduction in the Mott regime, even though
there is still no simple mathematical description. FElectrons
in d-band compounds spend quite a lot of time circulating
around the transition metal atom they happen to be
associated with, before moving on to the next one. When
disorder is weak, the process of motion from one unit cell
to the next has phase coherence, and Bloch states are
formed which carry currents (until interrupted by scattering.)
However, if the disorder is high, phase memory may be lost
within a unit cell (Ohkawa 1978) and the resulting eigen-
state carry no current. Collisions now play a dual role of
helping create the current through transitions between
states, and preventing the current from continuing too
far in the new state. Thus it is possible for Pnax O be
independent of the strength of the disorder.
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