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I TFORMULATION

The superconducting transition temperature (Tc) can be
theoretically obtained from the Eliashberg equa.tions1 if the inter-
action parameters aQF(w) and u* (characterizing electron-phonon
and Coulomb interactions respectively) are known. A simplified
version of these equations has been presented by Allen and Dynes2

based on the work of Bergmenn and Rainer3. The equations are

=]

p(T)v, =nzo Ko (T), (1)
m
K= 2A%(mn) + A% (wint1) - 2p* - 5 [ome1na*(0) + 2221 AT (2] (2)
A¥(e) = 2 faw waeF(w)/[@2 + (ZNLT)%] (3)

where the eigenvectofs % are related to the gap parameter

A(iwm) = Ay. The value of T is defined as that temperature where
the maximum eigenvalue p(T) becomes zero. In searching for the
meximum eigenvalue of a matrix % of infinite dimension, 1t 1is
useful to note that the sequence of maximum eigenvalues oy of

the principal mirors %N (of order N by N) form a series of
monotonically increasing bounds to p. The procedure used for
solving eq (1) for TC is to solve successively the problems
truncated at N = 1, 2, 4, 8, 16, 32, and 64, We find that the
solution of order 64 x 64 has accurately converged for materials

with Tc/¢<w2> > 0.01 or X > 0.5, where A is the electron-phonon

coupling strength

A = 2fawaFlw)/ w = A*(0) (4).



In practice it is not easy to calculate TC directly from azF
and u*. It is much more convenient to assume a value for TC and
vary the amplitude of a2F (i.e. vary A keeping the shape of agF
fixed.) This way a curve of T, as a function of A (for fixed u*)
can be generated, and the value of Tc can be graphically interpolated
from the known value of A. The phonon coupling enters the kernel
(eq.2) only turough the function A* (eq.3). We define a function

£( %) which is a'normalized version of A¥

A (2) = A £ (2neT/V<w?) (5)
f(x) = (2/2)fdmwa2F(w) /[@2+ <w2>x2:] (6)
<w'> = (E/A)fdmwn-1a2F(w) (1)

where V<w2> is a convenient rms phohon frequency. The function
flx) takes the value 1 at x = 0O and goes asymptotically to 1/x 2
at large x. TFor intermediate values of x, f is a monotonically
decreasing function whose precise shape contains the information
about the shape of aEF which is relevant to Tc. We next split
the kernel % into two parts, % + Ag, where % and % are both

independent of A.

A= —op - (2m+1)8,, (8)
B = f(en(m—n)Tc//EE‘EZ )

+ f(2n(m+n+1)Tc/¢<w2> )

B
-8, D+ 2%21 £(2net_/V<u?>") 7] (9)



b,

The procedure now becomes to agsume a value for TC//?w2> s construct
the principle minors AN and BN, and finally to solve for the coupling

strength AN in Nth order using

(%N + AN%N) by = O (10)

I DESCRIPTION OF THE PROGRAMS

The actual setting up and solving of eq.(10) is done by a
subroutine SOLVE (TC, EL, CC, NALF), where TC is the assumed value
of TC/J:EZ; and EL is an array of dimension T which returns
seven successive apprrximations to A obtained by sclving %N with

. . 1 ‘ . )
dimension N = 20, 2y cees 26 = 64, The parameter CC is the given

value of u¥*, which we define by

u9(~=“/|:‘]+]4 ln(wp /¢<w2>)] {(11)

There is some confusion about u* in the literature. The purpose 6f
using w¥ instead of 1 is to make the effective Coulomb cutoff equal

to the phonon cutoff. The Coulomb cutoff is approximately the electron
plasms frequency wP, while the phonon cutoff has been taken to mean

two distinet things: either a frequency of order the maximum

phonon frequency or the actual maximum frequency at which integration

is cut off in a computer program. The second meaning is more

naturel in many ways but suffers from the disadvantage of
arbitrariness. Therefore we have opted for the former meaning.
Fortunately u¥ is not sensitive to smaell variations (such as

replacing wp by EF or V<we> by @D.) However, some authors, notably



McMillanh, have used instead of v<w2> , a cutoff about 10 times
larger. This is enough to affect p* by 30%. In the actual
computations described here, an effective u*(N) is used which

depends on the truncation point w,_ = 2ﬂNTc, namely

N
W) = w01+ (Vo> fug) ] (12)

This procedure was found to be advantageous to obtain rapid convergence
and eliminate small fluctuations in TC(A) which tend to oceur if
a fixed p* is used and truncated at some value of w, .

The parémeter NALF should be read in as 1 if the data (a2F)
is new and as some other integer if previously read data is to be
re-used.

The subroutine SOLVE obtains the function f(x) through a
function subprogram called F(X). This program has thfee different
exit points. If the argument X is negative, the subprogram F does
not actually calculate f(x) but instead performs the preliminary
operations. These consist of reading data and calculating various
parameters which are immediately printed out. These are summarized

below.

Data:  TITLE, NAF, DOM (FORMAT 3Ak, IS5, F5.2)

AF(I), I = 1, NAF (FORMAT 10E8.3)

TITLE = name of material such as LEAD
NAF = number of data points for a2F

DOM

increment Aw of data points in meV.

AF = o°F



* Print-out: TITLE
ELA = )
OM1 = <w> in meV
M2 = <w2> in meV2

OMY = <wh> in meV

When the argument X is positive, the subprogram F calculates
f(x) either by Simpson's rule integration (when X < 5,)or by the
first two terus of a large X expansion (when X > 5.), namely

2.2.2

f(x) ¢ (1 - <mh>/ <w > x )/x2

(13)

The final step is to solve eq.(10). For this purpose a general
program was used called AINVIT, which was written by C.M.M. Nex. This
program solves for A very efficiently using inverse iteration. At
each stage (except the first one, N = 1) the previous value XN~1
and -eigenvector %N—1 are used as the initial trial values for the
Nth stage. The actual solution is performed by a subroutine named
CHOLSU, after Cholski decomposition has been performed by & subroutine
named CHOLDE. Both of these programs were also written by C.M.M.

Nex. A description and listing of the programs AINVIT, CHOLDE,
and CHOLSU is attached.

The package described here is completely self-contained. The
user needs to provide only a brief calling program and data. A
sample calling program, data, and output are given in the next
section. The data shownareagF(w) for lead as measured by Rowell

and McMillan5

. Several choices of u* and TC/V<w2> have been made
which illustrate the convergence, which is very rapid for ¥ =0
andvTc//kw2> = 0.1. The convergence is only slightly less rapid when

u¥ = 0.1, Convergence is slower for small TC . When



7.

u* = 0.1 at TC/JZEE; = 0.01, the approximate limit of this program
“has still not been reached, but convergence will cease being

adequate for somewhat smaller values of Tc. To handle smaller Tc’

the matrix would have to be enlarged beyond 64 x 6L, and perhaps a
coarser mesh than the exact Matsubare points w, could be used. There
is no limit on the maximum permissible value of TC/JIEZ; which this
program can handle. The output lists Tc/<w> as well as Tc//?w2>,

and gives not only the actual p* (eq.11) but also the running values

of u*(m) (eq.12)? The computing time on an IBM 370 machine for finding
seven successive approximations to A for a given Tc and u* is less

than 1 sec.
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IV BAVPLE CALLING PROGRAM, DATA, AND OUTPUTL
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V. LIST OF SUBROUTINES

SOLVE

subroutine solve(tc,el,cc,nalf)
common oml, om2, omé
dimension a(64,64) ,b(64,64),y(64),el(7),x(64),z(64)
dimension nt(64),c(32,32),ay(128)
solves for lambda given tc in units of om (rms omega)
cc 1s mustar, om is rms freqg in millivolts
el contains seven successive approximations to lambda
nalf is 1 if a new a**2*f is to be read
1 format(/1llh given tc =,e10.4,22h in units of rms omega )
2 format (13h matrix dim =,i4,9h lambda=,el10.4,8h mstar=,£8.4)
3 format (7x,4htc =,e10.4,18h in units of omega )
4 format (9h mustar =,£f7.4)
if (nalf .ne. 1) go to 25
dum=f (-1.)
25 continue
td=tc*sqgrt (om2) /oml
print 1,tc
print 3,td
print 4,cc
pi=3.14159
p=2.*pi*tc
use delta fn answer for first approx eigenvalue
e=(1l.+2.%cc)*(1l.+p*p)
construct first approx eivenvector

y(1)=1.
do 30 i=2,64
30 y(i)=0.

construct the missing parts of the matrix
do 200 n=1,7
cm=cc
np=nc+1
nc=nc*2
if (n .eq. 1) np=1
if (n .eq. 1) nc=1

calculate missing values of ay(n), the renormalization
il=nc+1
iu=2*nc
if (n .eq. 1) il=1
do 34 i=il,iu
s=float (i) *p

34 ay(i)=£f(s)



SOLVE (continued)

if (abs(cc) .lt. 1.e-04) go to 35
c renormalize mustar to the specific cutoff n
xn=float (nc)
cm=1./(1l./cc-alog(p*xn))
35 continue
do 100 i=1,nc
do 100 j=1,1
a(i,j)=-2.*cm
if (i .ne. j) go to 40
a(i,j)=a(i,j)-2.*float(1i)+1.
if (i .lt. np) go to 100
40 if (1 .1lt. np) go to 80
b(i,j)=ay(i+j-1)
if (i .ne. j) b(i,3j)=b(i,j)+ay(i-3)
if (i .ne. j) go to 80
if (n .eq. 1) go to 100
jm=j-1
do 70 1=1,jm
70 b(i,3)=b(i,j)-2.%ay (1)
go to 100
80 a(j,i)=a(i,3j)
b(j,i)=b(i,3J)
100 continue
Cc store a in c because ainvit overwrites a
if (n .eqg. 7) go to 110
do 105 i=1,nc
do 105 j=1,nc
105 c(i,j)=a(i,])
110 continue
ifail=0
eps=0.002
call ainvit(a,b,e,64,nc,y,eps,5.0e-06,x,z,30,nt,ifail)
print 2,nc,e,cm
c elgenvector X becomes next approx eligenvector
c restore a out of storage in c
el (n)=e
test=0.01%*e
do 120 i=1,nc
y(i)=x(1i)
do 120 j=1,nc
120 a(i,j)=c(i,3)
200 continue
return
end



function f(x)

c X is 2 pi n tc/om (rms omega)

W N

common oml,om2,omé

dimension af (150),title(3)

format(3a4,i4,£10.4)

format (3a4)

format (5£8.3)

format (5h ela=,£f6.3,5h oml=,f6.1,5h om2=,e10.3,5h om4=,e10.3)
if (x .ge. 0.0) go to 100

c read data for a2f with dom=freqg. incr. in milliv.

open (unit=1,file='a2f.d',6 status='0ld")
read(1l,1) title,naf,dom

write(6,2) title

read(1,3) (af(i),i=1,naf)
close(unit=1, status="'keep"')

¢ integrate to get ela, oml, etc.

50

100

200

300

e=0.0

0l1=0.0

02=0.0

04=0.0

om=0.0

is=-1

do 50 i=1,naf

om=om+dom

is=-1is

si=2.0

if (is .gt. 0) si=4.0
e=e+af (i) *si/om
ol=ol+af (i) *si
o2=02+af (1) *si*om
o4=o04+af (1) *si*om*om*om
ela=2.0*e*dom/3.0
oml=2.0*0l*dom/ (3.0*ela)
om2=2.0%*02*dom/ (3.0*ela)
omd=2.0%*o04*dom/ (3.0*%ela)
write(6,4) ela,oml,om2, omé
rmsom=sqgrt (om2)
rms=rmsom*11.605
write(6,*)' rms frequency=',rmsom,' (meV) ',rms,' (K)'
£f=1.0

return

if (x .gt. 5.0) go to 300
om=0.

is=-1

s=0.

do 200 i=2,naf

is=-is

si=2.0

if (is .gt. 0) si=4.0
om=om+dom
s=s+si*om*af (i) / (om*om+om2*x*x)
f=2.0*s*dom/ (3.0*ela)
return
f=(1.0-om4/ (om2*x) **2) / (x*xX)
return

end

12.



AINVIT

subroutine ainvit(a,b,e,nr,nc,y,eps,emach,x,z,nmx,nt,ifail)
dimension b(nr,nc),a(nr,nc),y(nc),x(nc),z(nc),nt (nc)

c symmetric version - overwrites the lower triangle of a only

30

31

34

32

33

35

n=nc
dun=e*e

if (ifail) 30,33,30
dx=0.

dy=0.

do 32 i=1,n
dl=-a(i,i)*y (1)
d2=-b(i,1i)*y (1)

do 31 j=1,1
dl=dl+a(i,3j)*v(3)
d2=d2+b(1i,3) *y(3)
do 34 j=1,n
di=dl+a(3j,1i)*y(3)
d2=d2+b(3j,1i) *y(3)
dx=dx+y (1) *dl
dy=dy+y (1) *d2
e=dx/dy
ifail=0

do 2 i=1,n

do 1 j=1,1
a(i,j)=a(i,j)+e*b(i,J)
z(1)=0.0

call cholde(a,nt,nr,nc, emach)
dy=0.0

iac=3

ncpt=0

noit=0

do 4 i=1,n

x(1i)=b(i,i)*y (i)

do 35 j=1,n
x(i)=x(i)-b(j,1)*y(3)

do 4 j=1,1
x(1i)=x(i)-b(i,J)*v(3)

call cholsu(a,nt,x,nr,nc)
xnorm=0.

icpt=ncpt

do 6 i=1,n

d=abs (x (1))

if (d-xnorm) 6,6,5

xnorm=d

ncpt=1

continue

dx=1.0/x(ncpt)

do 7 i=1,n

x(1i)=x(1)*dx

13.



11
12

13

14
15

16

17

18

19
20

AINVIT (continued)

noit=noit+1

iac=iac+1

if (abs(dx-dy)-eps) 20,20,8
if (noit-nmx) 9,9,19

if (icpt-ncpt) 10,11,10

iac=1
go to 17
if (iac-3) 17,12,12

do 15 i=1,n
yr=(z(i)-y(i))**2

dum=z (1) -2.0*y (1) +x(1)

if (abs(dum)-emach) 13,13,14
vr=0.0

go to 15

yr=yr/dum

x(1i)=z(1i)-yr

do 16 i=1,n

y(i)=x(i)

yvr=(dz-dy) **2

vr=yr/ (dz-2.0*dy+dx)
dx=dz-yr

iac=1

do 18 i=1,n

z(1i)=y (1)
y(i)=x(1i)
dz=dy

dy=dx

go to 3
ifail=-nmx-1
eps=abs (dx-dy)
e=e+dx
ifail=ifail+noit
return

end

14.
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13

14

CHOLDE

subroutine cholde(a,nt,nr,nc, emach)
dimension a(nr,nc),nt(nc)

if (nc .eqg. 1) return

n=nc

do 10 ii=2,n

i=4ii-1

yvr=abs(a(i,i))

in=i

do 2 j=ii,n

if (yr-abs(a(j,j))) 1.,2,2
yr=abs(a(j,J))

in=j

continue

nt(i)=in

if (in-1) 6,6,3

do 12 j=1,1

dum=a (i, 3j)

a(i,j)=a(in,j)

a(in, j)=dum

do 4 j=1,in

dum=a(j, 1)

a(j,i)=a(in,Jj)

a(in, j)=dum

do 5 j=in,n

dum=a(j, 1)

a(j,i)=a(j,in)

a(j,in)=dum

dum=a (i, 1)

a(i,i)=a(in,in)

a(in, in)=dum
a(i,i)=sign(sgrt(yr),a(i,i)
if(abs(a(i,i))-emach) 7,7,8
a(i,i)=emach*1.0e-05

do 9 j=ii,n
a(j,i)=a(j,i)/a(i,i)
dum=a(j,1i)*sign(1.0,a(i,1))
do 9 k=ii,j
a(j,k)=a(j,k)-dum*a(k, i)
continue

if (abs(a(n,n))-emach) 13,13,14
a(n,n)=emach*1.0e-05

return
a(n,n)=sign(sgrt(abs(a(n,n))),a(n,n))
return

end

)

15.
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CHOLSU

subroutine cholsu(a,nt,x,nr,nc)
dimension a(nr,nc),nt(nc),x(nc)
if (nc .eqg. 1) go to 10

n=nc

do 2 1i=2,n

i=4ii-1

in=nt (i)

if (in-i) 1,2,1

dum=x (in)

x(in)=x(1)

x (1) =dum

continue

x(1l)=x(1l)/abs(a(l,1))

do 4 1i=2,n

i=1i-1
do 3 j=1,1
x(ii)=x(ii)-a(ii,J)*x(3)

)
x(ii)=x(1ii)/abs(a(ii,ii))
=x(n)/a(n,n)

do 6 1ij=2,n

ii=n-1j+2

i=1i-1
x(i)=sign(l1.0,a(i,i))*x(1i)
do 5 j=ii,n
x(i)=x(i)-a(j,1)*x(3)
x(1)=x(1)/abs(a(i,1i))

do 8 1i=2,n

i=n-ii+1

in=nt (i)

if (in-1) 7,8,7

dum=x (in)

x(in)=x(1)

x (1) =dum

continue

return

x(1)=x(1)/a(l,1)

return

end

16.



1,

YI DESCRIPTION OF MATRIX MANIFULATION PROGRAMS

AINVIT

SUBROUTLN ATNVIT(A,B,E,NR,NC,Y,PS, KMACH, X, 2, N4, NT, TRATL)
DINMENSION B(HR,NCY,A(Nt,NC),Y(8C),2{x0), z{uc), w0 {NG )

FURPOSE To find a root of the eigenproblenm kA+Aﬁ)x = 0 using inverse iteration
The root nearestv a given number £ is located or thet nearest a given eigen-
vector by Lfirst forming the Rayleigh quotlent . For the method see Willdnson

"The Algebraic Eigenvalue Problem)

inpub
A natrix as in problews definition I {overwritten)
8 matrix as in probles definition
B approximate root (if approPriate§ RN « N
NR Firat dimension of arrays A and B in calling routine
NC dimension of matrices of problem .
Y  initial ‘approximate' eigsnvector (1,1,1,9 ».) will {overwritten)

often suffice . :
Ep3 accuracy reguired in eigenvalue (overwritten)\
*EACH machine accuracy {$.08-6 in single prec 1blon)

w v X

NiX maximunm number &f iterations allowed { ~30)
IFATL QO if approximate eigenvalme given ‘ {overwritten)

¥

+ 0 if approximete eigenvector given

2 , i1 are used ew working space

®

ouiput

15 computed eigenvalue - -
EPS estimated error in compuied eigenwalue

X computed seigenvector

IPAIL = 0 acocuracy not achieved after NMX iterations

£ 0 the number of iterations used

notes

this routine uses GELIY aml SUBS if & and B ere symmetric thern calls o
these subroutines should be replaced by calls to CHOLDE end CHOLSU

%



CHOLDE

SUBROUTL NG CHOLDE (A, NT, N, 2, EMACH )

DIMENSION A{MR,NC),NT(10)

18.

O

- purpese to pexform Cholsld decomposition omn e real syumetric matrix .

s p R T .
A is factarised inte U™ B U
elements are X1 . These signs are stored with the diagonal

: 2
thus? det(A) = |{product of diagonal elts, of U] #8 * sign

Oniy the lower triangle of & need be dsfined .

. ipput

A matrix to be facltorised ; lower trianglem only

MR first dimension of array A ia calling

| N&  dimension of matrix of problem

EMACH machine s&ccuracy

~gutput
;.A ‘the matrix UT,stored in lower triangle

TN 1ist of pivotal rpws

CHOLSU

SUBROUTLNE CHOLSU{A,NT, X, NR,IC)
DLMENSION A{NR, 1), N (N0, X (&)

whare D 1s a diagonzl matrix

whose non-zero
elements of U
of the product.

(overwritten).

purpose to solve the set of equations Ax = b , A real symeeiric , after

A has been factorised by CHOLDE s wwiwg;% At

imput
A

N©

X

R

NG

output
X

output from CHOLDH

output from CHOLDE ‘ )

right hand side of matrix eguation ; ﬁf
first dimension of arrey & in calling routine

dimension of matrixz &

§F

AfiA?

o

calewlated solution

m{;{.:

O

(overwritten)





