Technical Report no. 7 Theory of Condensed Matter Group # A COMPUTER PROGRAM FOR NUMERICAL SOLUTION OF THE ELIASHBERG EQUATIONS TO FIND $\mathbf{T_c}$ TCM/4/1974 by Philip B. Allen* # Contents | I | Formulation | p.2 | |-----|---|---| | II | Description of the Programs | p.4 | | III | References | p.7 | | IV | Sample Calling Program, Data and Output | p.8 | | V | Listing of Subroutines | | | | SOLVE F(X) AINVIT CHOLDE CHOLSU | p. 10
p. 12
p. 13
p. 15
p. 16 | | VI | Description of Matrix Manipulation Programs | p. 17 | Alfred P. Sloan Fellow. Permanent address: Dept. of Physics, SUNY, Stony Brook, New York 11790. Work supported in part by U.S. National Science Foundation grant no. GH037925 #### I FORMULATION The superconducting transition temperature (T_c) can be theoretically obtained from the Eliashberg equations 1 if the interaction parameters $\alpha^2 F(\omega)$ and μ^* (characterizing electron-phonon and Coulomb interactions respectively) are known. A simplified version of these equations has been presented by Allen and Dynes 2 based on the work of Bergmann and Rainer 3 . The equations are $$\rho(T)\psi_{\rm m} = \sum_{\rm n=0}^{\infty} K_{\rm mn}(T)\psi_{\rm n} \tag{1}$$ $$K_{mn} = \lambda^*(m-n) + \lambda^*(m+n+1) - 2\mu^* - \delta_{mn} [2m+1+\lambda^*(0) + 2\sum_{k=1}^{m} \lambda^*(k)]$$ (2) $$\lambda^*(\ell) = 2 \int d\omega \, \omega \alpha^2 F(\omega) / \left[\omega^2 + (2\pi \ell T)^2\right]$$ (3) where the eigenvectors ψ are related to the gap parameter $\Delta(i\omega_m) \equiv \Delta_m$. The value of T_c is defined as that temperature where the maximum eigenvalue $\rho(T)$ becomes zero. In searching for the maximum eigenvalue of a matrix K of infinite dimension, it is useful to note that the sequence of maximum eigenvalues ρ_N of the principal minors K (of order N by N) form a series of monotonically increasing bounds to ρ . The procedure used for solving eq (1) for T_c is to solve successively the problems truncated at N = 1, 2, 4, 8, 16, 32, and 64. We find that the solution of order 64 x 64 has accurately converged for materials with $T_c/\sqrt{<\omega^2>} > 0.01$ or $\lambda > 0.5$, where λ is the electron-phonon coupling strength $$\lambda = 2 \int d\omega \alpha^2 F(\omega) / \omega = \lambda^*(0)$$ (4). In practice it is not easy to calculate T_c directly from $\alpha^2 F$ and μ^* . It is much more convenient to assume a value for T_c and vary the amplitude of $\alpha^2 F$ (i.e. vary λ keeping the shape of $\alpha^2 F$ fixed.) This way a curve of T_c as a function of λ (for fixed μ^*) can be generated, and the value of T_c can be graphically interpolated from the known value of λ . The phonon coupling enters the kernel (eq.2) only through the function λ^* (eq.3). We define a function f(x) which is a normalized version of λ^* $$\lambda^*(\ell) = \lambda f \left(2\pi \ell T / \sqrt{\langle \omega \rangle}\right) \tag{5}$$ $$f(\mathbf{x}) = (2/l) \int_{-\infty}^{\infty} d\omega \omega \alpha^{2} F(\omega) / \left[\omega^{2} + \langle \omega^{2} \rangle_{\mathbf{x}}^{2} \right]$$ (6) $$\langle \omega^{n} \rangle = (2/\lambda) \int d\omega \omega^{n-1} \alpha^{2} F(\omega)$$ (7) where $\sqrt{\langle \omega^2 \rangle}$ is a convenient rms phonon frequency. The function $f(\mathbf{x})$ takes the value 1 at \mathbf{x} = 0 and goes asymptotically to $1/\mathbf{x}^2$ at large \mathbf{x} . For intermediate values of \mathbf{x} , f is a monotonically decreasing function whose precise shape contains the information about the shape of $\alpha^2 \mathbf{F}$ which is relevant to $\mathbf{T}_{\mathbf{c}}$. We next split the kernel K into two parts, K + λK , where K and K are both independent of λ . $$A_{mn} = -2\mu^* - (2m+1)\delta_{mn}$$ $$B_{mn} = f(2\pi(m-n)T_c/\sqrt{\omega^2})$$ $$+ f(2\pi(m+n+1)T_c/\sqrt{\omega^2})$$ $$- \delta_{mn} \left[1 + 2\sum_{\alpha=1}^{\infty} f(2\pi \alpha T_c/\sqrt{\omega^2})\right]$$ (9) The procedure now becomes to assume a value for $T_c/\sqrt{<\!\omega^2\!>}$, construct the principle minors A_N and B_N , and finally to solve for the coupling strength λ_N in Nth order using $$\left(A_{NN} + \lambda_{NN} B_{NN} \right) \psi_{N} = 0 \tag{10}$$ # IN DESCRIPTION OF THE PROGRAMS The actual setting up and solving of eq.(10) is done by a subroutine SOLVE (TC, EL, CC, NALF), where TC is the assumed value of $T_c/\sqrt{\langle \omega^2 \rangle}$ and EL is an array of dimension 7 which returns seven successive approximations to λ obtained by solving K_W with dimension $N = 2^{\circ}$, 2° , ..., $2^{\circ} = 64$. The parameter CC is the given value of μ^* , which we define by $$\mu^* = \mu / \left[1 + \mu \ln(\omega_D / \sqrt{\langle \omega^2 \rangle}) \right]$$ (11) There is some confusion about μ^* in the literature. The purpose of using μ^* instead of μ is to make the effective Coulomb cutoff equal to the phonon cutoff. The Coulomb cutoff is approximately the electron plasma frequency ω_p , while the phonon cutoff has been taken to mean two distinct things: either a frequency of order the maximum phonon frequency or the actual maximum frequency at which integration is cut off in a computer program. The second meaning is more natural in many ways but suffers from the disadvantage of arbitrariness. Therefore we have opted for the former meaning. Fortunately μ^* is not sensitive to small variations (such as replacing ω_p by E_F or $\sqrt{<\omega^2>}$ by Θ_D .) However, some authors, notably McMillan¹⁴, have used instead of $\sqrt{\langle \omega^2 \rangle}$, a cutoff about 10 times larger. This is enough to affect μ^* by 30%. In the actual computations described here, an effective $\mu^*(N)$ is used which depends on the truncation point $\omega_N = 2\pi N T_c$, namely $$\mu^*(N) = \mu^*/\left[1 + \mu^* \ln(\sqrt{\langle \omega^2 \rangle} / \omega_N)\right]$$ (12) This procedure was found to be advantageous to obtain rapid convergence and eliminate small fluctuations in $T_c(\lambda)$ which tend to occur if a fixed μ^* is used and truncated at some value of ω_n . The parameter NALF should be read in as 1 if the data $(\alpha^2 F)$ is new and as some other integer if previously read data is to be re-used. The subroutine SOLVE obtains the function f(x) through a function subprogram called F(X). This program has three different exit points. If the argument X is negative, the subprogram F does not actually calculate f(x) but instead performs the preliminary operations. These consist of reading data and calculating various parameters which are immediately printed out. These are summarized below. Data: TITLE, NAF, DOM (FORMAT 3A4, I5, F5.2) AF(I), I = 1, NAF (FORMAT 10E8.3) TITLE = name of material such as LEAD NAF = number of data points for $\alpha^2 F$ DOM = increment $\Delta \omega$ of data points in meV. $AF = \alpha^2 F$ Print-out: TITLE $ELA = \lambda$ $OM1 = <\omega> in meV$ $OM2 = <\omega^2 > in meV^2$ $OM^{1/4} = \langle \omega^{1/4} \rangle \text{ in meV}^{1/4}$ When the argument X is positive, the subprogram F calculates f(x) either by Simpson's rule integration (when $x \le 5$.)or by the first two terms of a large x expansion (when x > 5.), namely $$f(x) \approx (1 - \langle \omega^4 \rangle / \langle \omega^2 \rangle^2 x^2) / x^2$$ (13) The final step is to solve eq.(10). For this purpose a general program was used called AINVIT, which was written by C.M.M. Nex. This program solves for λ very efficiently using inverse iteration. At each stage (except the first one, N = 1) the previous value λ_{N-1} and eigenvector ψ_{N-1} are used as the initial trial values for the Nth stage. The actual solution is performed by a subroutine named CHOLSU, after Cholski decomposition has been performed by a subroutine named CHOLDE. Both of these programs were also written by C.M.M. Nex. A description and listing of the programs AINVIT, CHOLDE, and CHOLSU is attached. The package described here is completely self-contained. The user needs to provide only a brief calling program and data. A sample calling program, data, and output are given in the next section. The data shown are $\alpha^2 F(\omega)$ for lead as measured by Rowell and McMillan 5 . Several choices of μ^* and $T_c/\sqrt{<\omega^2>}$ have been made which illustrate the convergence, which is very rapid for $\mu^*=0$ and $T_c/\sqrt{<\omega^2>}=0.1$. The convergence is only slightly less rapid when $\mu^*=0.1$. Convergence is slower for small T_c . When $\mu^*=0.1$ at $T_c/\sqrt{<\omega^2>}=0.01$, the approximate limit of this program has still not been reached, but convergence will cease being adequate for somewhat smaller values of T_c . To handle smaller T_c , the matrix would have to be enlarged beyond 64 x 64, and perhaps a coarser mesh than the exact Matsubara points ω_n could be used. There is no limit on the maximum permissible value of $T_c/\sqrt{<\omega^2>}$ which this program can handle. The output lists $T_c/<\omega>$ as well as $T_c/\sqrt{<\omega^2>}$, and gives not only the actual μ^* (eq.11) but also the running values of $\mu^*(N)$ (eq.12). The computing time on an IBM 370 machine for finding seven successive approximations to λ for a given T_c and μ^* is less than 1 sec. ACKNOWLEDGEMENTS: The help of C.M.M. Nex has been invaluable in constructing these programs. Permission to use his programs AINVIT, CHOLDE, and CHOLSU is gratefully acknowledged. #### III REFERENCES - G.M. Eliashberg, JETP 11, 696 (1960); 12, 1000 (1960). Also see for example, J.R. Schrieffer, Superconductivity (W.A. Benjamin, New York, 1964) and D.J. Scalapino, in Superconductivity, edited by R.D. Parks (M. Dekher, New York, 1969). - 2. P.B. Allen and R.C. Dynes, to be published. - 3. G. Bergmann and D. Rainer, Z. Phys. 263, 59 (1973). - W.L. McMillan, Phys. Rev. <u>167</u>, 331 (1968); W.L. McMillan and J.M. Rowell, in <u>Superconductivity</u>, edited by R.D. Parks (M. Dekher, New York, 1969). - 5. J.M. Rowell and W.L. McMillan, Phys. Rev. Letters 14, 108 (1965). # IV SAMPLE CALLING PROGRAM, DATA, AND OUTPUT # Calling Program | | and the second second | | | , | 2 2 May 141 July 1948 | F | |------|-----------------------|---------|-------|---------|-----------------------|---| | 0001 | | COMMON | OMI. | OM2,OM | 4 | | | 0002 | | DIMENS | ION E | L(7) | | | | 0003 | | TC=01 | 8 | | | | | 0004 | | 00 20 | 1=1,2 | | | | | 0005 | | TC=TC+ | .09 | | | | | 0006 | | CC=1(| 3 | | | | | 0007 | | DD 20 . | J=1,2 | | | | | 0008 | | CC=CC+(| 0.1 | | ¥ | | | 0009 | | NALF=1- | · J-I | | | | | 0010 | | CALL SE | JLVE | TC, EL, | CC, NAL | 3 | | 0011 | 20 | CONTINE | JE | | | | | 0012 | | STOP | | | | | | 0013 | | END | | | | | | | | | | | | | ### Date ``` LEAD 210 .000E-0 .571E-4 .228E-3 .514E-3 .913E-3 .143E-2 .205E-2 .331E-2 .607E-2 .765E-2 "101E-1 .112E-1 .137E-1 .148E-1 .177E-1 .196E-1 .243E-1 .297E-1 .389E-1 .481E-1 -599E-1 .694E-1 .799E-1 .884E-1 .984E-1 .107E-0 .120E-0 .134E-0 .154E-0 .177E-0 .216E-0 .274E-0 .355E-0 .443E-0 .538E-0 .629E-0 .722E-0 .804E-0 .852E-0 .874E-D .889E-0 .918E-0 .960E-0 .101E 1 .103E 1 .864E-0 .819E-D .997E-0 .939E-0 .907E-0 .415E-0 .398E-D .760E-0 .698E-0 .635E-0 .590E-0 .552E-0 .515E-0 .473E-0 -440E-0 .381E-0 .365E-0 .348E-0 .343E-0 .350E-0 .356E-0 .360E-0 .361E-0 .363E-0 .568E-0 .650E-0 .742E-D .3676-0 .377E-0 .388E-0 .401E-0 .418E-0 .450E-0 .500E-0 .851E-0 .980E-0 .113E 1 .124E 1 .126E 1 .114E 1 .928E-0 .698E-0 .490E-0 .324E-D .201E-0 .123E-0 .883E-1 .664E-1 .613E-1 .598E-1 .568E-1 .507E-1 .436E-1 .377E-1 .345E-1 .321E-1 .290E-1 .252E-1 .214E-1 .180E-1 .150E-1 .116E-1 .843E-1 .711E-2 .560E-2 ``` ## Output ``` LEAD ELA= 1.549 DM1= 5.2 DM2= 0.310E+02 DM4= 0.146E+04 GIVEN TC =0.1000E-01 IN UNITS OF RMS UMEGA TC =0.1067E-01 IN UNITS DF DMEGA MUSTAR = 0.0 MATRIX DIM = LAMBDA=0.1008E+01 MSTAR = Š MATRIX DIM = 2 LAMBDA = 0.6105E+00 MSTAR = 0.0 MATRIX DIM = Éş. LAMBDA=0.4433E+00 # STAR # 0.0 MATRIX DIM = 2 LAMBDA=0.3628E+00 MSTAR 0.0 MATRIX DIM = 16 LAMBDA=0.3281E+00 MSTAR = 0.0 MATRIX DIM = 32 LAMBDA=0.3179E+00 MSTAR = 0.0 LAMBDA=0.3163E+00 MSTAR= MATRIX DIM = 64 0.0 GIVEN TC =0.1000E-01 IN UNITS OF RMS OMEGA TC =0.1067E-01 IN UNITS OF DMEGA MUSTAR = 0.1000 MATRIX DIM = 2 LAMBDA=0.1166E+01 MSTAR = 0.0783 MATRIX DIM = 2 LAMBOA=0.7453E+00 MSTAR= 0.0828 HATRIX DIM = 20 LAMBDA=0.5738E+00 MSTAR = 0.0879 MATRIX DIM = 8 LAMBDA=0.4996E+00 MSTAR * 0.0936 MATRIX DIM = 16 LAMBDA = 0 -4804E+00 MSTAR = 0.1001 32 MATRIX DIM = LAMBDA=0.4888E+00 MSTAR = 0.1075 MATRIX DIM = 64 LAMBDA=0.4985E+00 MSTAR= 0.1162 GIVEN TC =0.1000E+00 IN UNITS OF RMS OMEGA TC =0.1067E+00 IN UNITS OF DMEGA MUSTAR = 0.0 MATRIX DIM = 5 LAMBDA=0.1557E+01 MSTAR = 0.0 MATRIX DIM = 2 LAMBDA = 0 - 1111E + 01 #STAR= 0.0 MATRIX DIM = Ex LAMBDA = 0 . 100 7E + 01 MSTAR = 0.0 MATRIX DIM = 8 LAMBDA=0.9912E+00 MSTAR= 0.0 MATRIX DIM = 16 LAMBDA=0.9898E+00 MSTAR = 0.0 MATRIX DIM = 32 LAMBDA=0.9897E+00 MSTAR = 0.0 MATRIX DIM = 66 LAMBDA=0.9897E+00 MSTAR= 0.0 GIVEN TC =0.1000F400 IN UNITS OF RKS UMEGA TC =0.1067E+00 IN UNITS OF DMEGA MUSTAR = 0.1000 MATRIX DIM = LAMBDA = 0.1855E+01 3 MSTAR= 0.0956 MATRIX DIM = 2 LAMBDA=0.1411E+01 MSTAR= 0.1023 MATRIX DIM = 24 LAMBDA=0.1356E+01 MSTAR= 0.1102 MATRIX DIM = 8 LAMBDA = 0 . 1382E + 01 MSTAR = 0.1193 MATRIX DIM = 0.1300 16 LAMBDA=0.1396E+01 MSTAR = MATRIX DIM = 32 LAMBDA=0.1399E+01 MSTAR= 0.1429 MATRIX DIM = 64 LAMBDA=0.1400E+01 MSTAR= 0.1586 ``` #### V. LIST OF SUBROUTINES #### SOLVE ``` subroutine solve(tc,el,cc,nalf) common om1, om2, om4 dimension a(64,64), b(64,64), y(64), el(7), x(64), z(64) dimension nt(64), c(32, 32), ay(128) c solves for lambda given tc in units of om (rms omega) c cc is mustar, om is rms freq in millivolts c el contains seven successive approximations to lambda c nalf is 1 if a new a**2*f is to be read 1 format(/11h given tc =,e10.4,22h in units of rms omega) 2 format(13h matrix dim =, i4,9h lambda=,e10.4,8h mstar=,f8.4) 3 format(7x, 4htc = ,e10.4, 18h in units of omega) 4 format(9h mustar =,f7.4) if (nalf .ne. 1) go to 25 dum=f(-1.) 25 continue td=tc*sqrt(om2)/om1 print 1,tc print 3,td print 4,cc pi=3.14159 p=2.*pi*tc c use delta fn answer for first approx eigenvalue e=(1.+2.*cc)*(1.+p*p) c construct first approx eivenvector y(1)=1. do 30 i=2,64 30 y(i) = 0. c construct the missing parts of the matrix do 200 n=1,7 cm=cc np=nc+1 nc=nc*2 if (n .eq. 1) np=1 if (n .eq. 1) nc=1 c calculate missing values of ay(n), the renormalization il=nc+1 iu=2*nc if (n \cdot eq. 1) il=1 do 34 i=i1,iu s=float(i)*p 34 \text{ ay(i)} = f(s) ``` #### SOLVE (continued) ``` if (abs(cc) .lt. 1.e-04) go to 35 c renormalize mustar to the specific cutoff n xn=float(nc) cm=1./(1./cc-alog(p*xn)) 35 continue do 100 i=1,nc do 100 j=1,i a(i,j) = -2.*cm if (i .ne. j) go to 40 a(i,j)=a(i,j)-2.*float(i)+1. if (i .lt. np) go to 100 40 if (i .1t. np) go to 80 b(i,j)=ay(i+j-1) if (i .ne. j) b(i,j)=b(i,j)+ay(i-j) if (i .ne. j) go to 80 if (n .eq. 1) go to 100 jm=j-1 do 70 l=1,jm 70 b(i,j)=b(i,j)-2.*ay(1) go to 100 80 a(j,i)=a(i,j) b(j,i)=b(i,j) 100 continue c store a in c because ainvit overwrites a if (n.eq. 7) go to 110 do 105 i=1,nc do 105 j=1,nc 105 c(i,j)=a(i,j) 110 continue ifail=0 eps=0.002 call ainvit(a,b,e,64,nc,y,eps,5.0e-06,x,z,30,nt,ifail) print 2,nc,e,cm c eigenvector x becomes next approx eigenvector c restore a out of storage in c el(n)=e test=0.01*e do 120 i=1,nc y(i) = x(i) do 120 j=1,nc 120 a(i,j)=c(i,j) 200 continue return end ``` F(X) ``` function f(x) c x is 2 pi n tc/om (rms omega) common om1, om2, om4 dimension af(150), title(3) 1 format(3a4,i4,f10.4) 2 format(3a4) 3 format(5f8.3) 4 format(5h ela=,f6.3,5h om1=,f6.1,5h om2=,e10.3,5h om4=,e10.3) if (x .ge. 0.0) go to 100 c read data for a2f with dom=freq. incr. in milliv. open(unit=1,file='a2f.d',status='old') read(1,1) title,naf,dom write(6,2) title read(1,3) (af(i), i=1, naf) close(unit=1,status='keep') c integrate to get ela, om1, etc. e = 0.0 01=0.0 02 = 0.0 04 = 0.0 om=0.0 is=-1 do 50 i=1, naf om=om+dom is=-is si=2.0 if (is .gt. 0) si=4.0 e=e+af(i)*si/om o1=o1+af(i)*si o2=o2+af(i)*si*om 50 \text{ o4} = \text{o4} + \text{af(i)} * \text{si*om*om*om} ela=2.0*e*dom/3.0 om1=2.0*o1*dom/(3.0*ela) om2=2.0*o2*dom/(3.0*ela) om4=2.0*o4*dom/(3.0*ela) write(6,4) ela, om1, om2, om4 rmsom=sqrt(om2) rms=rmsom*11.605 write(6,*)' rms frequency=',rmsom,' (meV) ',rms,' (K)' f=1.0 return 100 if (x .gt. 5.0) go to 300 om=0. is=-1 s=0. do 200 i=2, naf is=-is si=2.0 if (is .gt. 0) si=4.0 om=om+dom 200 s=s+si*om*af(i)/(om*om+om2*x*x) f=2.0*s*dom/(3.0*ela) return 300 f=(1.0-om4/(om2*x)**2)/(x*x) return end ``` #### AINVIT ``` subroutine ainvit(a,b,e,nr,nc,y,eps,emach,x,z,nmx,nt,ifail) dimension b(nr,nc), a(nr,nc), y(nc), x(nc), z(nc), nt(nc) c symmetric version - overwrites the lower triangle of a only n=nc dun=e*e if (ifail) 30,33,30 30 dx = 0. dy=0. do 32 i=1,n d1 = -a(i,i) *y(i) d2=-b(i,i)*y(i) do 31 j=1,i d1=d1+a(i,j)*y(j) 31 d2=d2+b(i,j)*y(j) do 34 j=1,n d1=d1+a(j,i)*y(j) 34 d2=d2+b(j,i)*y(j) dx=dx+y(i)*d1 32 dy=dy+y(i)*d2 e=dx/dy 33 ifail=0 do 2 i=1,n do 1 j=1,i 1 a(i,j)=a(i,j)+e*b(i,j) 2 z(i) = 0.0 call cholde(a,nt,nr,nc,emach) dy=0.0 iac=3 ncpt=0 noit=0 3 do 4 i=1,n x(i)=b(i,i)*y(i) do 35 j=1,n 35 x(i) = x(i) - b(j,i) * y(j) do 4 j=1,i 4 x(i) = x(i) - b(i,j) * y(j) call cholsu(a,nt,x,nr,nc) xnorm=0. icpt=ncpt do 6 i=1,n d=abs(x(i)) if (d-xnorm) 6,6,5 5 xnorm=d ncpt=1 6 continue dx=1.0/x(ncpt) do 7 i=1,n 7 x(i)=x(i)*dx ``` #### AINVIT (continued) ``` noit=noit+1 iac=iac+1 if (abs(dx-dy)-eps) 20,20,8 8 if (noit-nmx) 9,9,19 9 if (icpt-ncpt) 10,11,10 10 iac=1 go to 17 11 if (iac-3) 17,12,12 12 do 15 i=1,n yr = (z(i) - y(i)) **2 dum=z(i)-2.0*y(i)+x(i) if (abs(dum)-emach) 13,13,14 13 yr=0.0 go to 15 14 yr=yr/dum 15 x(i)=z(i)-yr do 16 i=1,n 16 y(i) = x(i) yr=(dz-dy)**2 yr=yr/(dz-2.0*dy+dx) dx=dz-yr iac=1 17 do 18 i=1,n z(i) = y(i) 18 y(i) = x(i) dz=dy dy=dx go to 3 19 ifail=-nmx-1 20 eps=abs(dx-dy) e=e+dx ifail=ifail+noit return end ``` #### CHOLDE ``` subroutine cholde(a,nt,nr,nc,emach) dimension a(nr,nc),nt(nc) if (nc .eq. 1) return n=nc do 10 ii=2,n i=ii-1 yr=abs(a(i,i)) in=i do 2 j=ii,n if (yr-abs(a(j,j))) 1,2,2 1 yr=abs(a(j,j)) in=j 2 continue nt(i)=in if (in-1) 6,6,3 3 do 12 j=1,i dum=a(i,j) a(i,j)=a(in,j) 12 a(in,j)=dum do 4 j=1, in dum=a(j,i) a(j,i)=a(in,j) 4 a(in,j) = dum do 5 j=in,n dum=a(j,i) a(j,i)=a(j,in) 5 a(j,in) = dum dum=a(i,i) a(i,i)=a(in,in) a(in,in)=dum 6 a(i,i)=sign(sqrt(yr),a(i,i)) if(abs(a(i,i))-emach) 7,7,8 7 \ a(i,i) = emach*1.0e-05 8 do 9 j=ii,n a(j,i)=a(j,i)/a(i,i) dum=a(j,i)*sign(1.0,a(i,i)) do 9 k=ii,j 9 a(j,k)=a(j,k)-dum*a(k,i) 10 continue if (abs(a(n,n))-emach) 13,13,14 13 a(n,n) = emach*1.0e-05 return 14 a(n,n) = sign(sqrt(abs(a(n,n))), a(n,n)) return end ``` #### CHOLSU ``` subroutine cholsu(a,nt,x,nr,nc) dimension a(nr,nc),nt(nc),x(nc) if (nc .eq. 1) go to 10 n=nc do 2 ii=2,n i=ii-1 in=nt(i) if (in-i) 1,2,1 1 dum=x(in) x(in)=x(i) x(i) = dum 2 continue x(1) = x(1) / abs(a(1,1)) do 4 ii=2,n i=ii-1 do 3 j=1,i 3 \times (ii) = \times (ii) - a(ii,j) \times (j) 4 x(ii)=x(ii)/abs(a(ii,ii)) x(n)=x(n)/a(n,n) do 6 ij=2,n ii=n-ij+2 i=ii-1 x(i) = sign(1.0, a(i, i)) *x(i) do 5 j=ii,n 5 x(i)=x(i)-a(j,i)*x(j) 6 \times (i) = \times (i) / abs(a(i,i)) do 8 ii=2,n i=n-ii+1 in=nt(i) if (in-i) 7,8,7 7 \text{ dum}=x(in) x(in)=x(i) x(i) = dum 8 continue return 10 x(1)=x(1)/a(1,1) return end ``` # VI DESCRIPTION OF MATRIX MANIPULATION PROGRAMS # AINVIT SUBROUTING AINVIT(A,B,E,NR,NC,Y,LPS,LMACH,X,Z,NMX,NT,IFAIL) DIMENSION B(NR,NC),A(NA,NC),Y(NC),X(NC),Z(NC),NT(NC) <u>FURPOSE</u> To find a root of the eigenproblem $(A+\lambda B)x=0$ using inverse iteration. The root nearestv a given number E is located or that nearest a given eigenvector by first forming the Rayleigh quotient. For the method see Wilkinson "The Algebraic Eigenvalue Problem) # input | A | matrix as in problem definition | (overwritten) | |--------------|--|---------------| | B
E
NR | matrix as in problem definition approximate root (if appropriate) First dimension of arrays A and B in calling routine | (overitten) | | NC
Y | dimension of matrices of problem initial 'approximate' eigenvector (1,1,1,1) will often suffice | (overwritten) | | EPS | accuracy required in eigenvalue | (overwritten) | | MMACH | machine accuracy (5.0E-6 in single precision) | | | NIX | maximum number of iterations allowed (~30) | | | IFAIL | = 0 if approximate eigenvalue given
‡ 0 if approximate eigenvector given | (overwritten) | # Z , AT are used as working space # output r computed eigenvalue EPS estimated error in computed eigenvalue X computed eigenvector IFAIL = 0 accuracy not achieved after NMX iterations ∠ 0 the number of iterations used # notes this routine uses GELIM and SUBS if A and B are symmetric then calls to these subroutines should be replaced by calls to CHOLDE and CHOLSU SUBROUTINE CHOLDE (A, NT, NR, NC, FMACH) DIMENSION A(NR, NC), NT(NC) \circ purpose to perform Cholski decomposition onn a real symmetric matrix. A is factorised into U^T B U where D is a diagonal matrix whose non-zero elements are ± 1 . These signs are stored with the diagonal elements of U thus V $\det(A) = \left| \text{product of diagonal elts. of } U \right|^2 \times 3$ * sign of the product. Only the lower triangle of A need be defined. # input A matrix to be factorised; lower trianglem only (overwritten) 0 MR first dimension of array A in calling NC dimension of matrix of problem EMACH machine accuracy output A the matrix U stored in lower trangle NT list of pivotal rpws #### CHOLSU SUBROUTINE CHOLSU(A,NT,X,NR,NC) DIMENSION A(NR,NC),NT(NC),X(NE) purpose to solve the set of equations Ax = b, A real symmetric, after A has been factorised by CHOLDE is compute $A^{-1}b^{-1}$ input A output from CHOLDE NT output from CHOLDE X right hand side of matrix equation; & (overwritten) NR first dimension of array A in calling routine NC dimension of matrix A # output X calculated solution = $A^{-1}b$