Technical Report no. 7 Theory of Condensed Matter Group

A COMPUTER PROGRAM FOR NUMERICAL

SOLUTION OF THE ELIASHBERG EQUATIONS TO FIND $\mathbf{T_c}$

TCM/4/1974

by

Philip B. Allen*

Contents

I	Formulation	p.2
II	Description of the Programs	p.4
III	References	p.7
IV	Sample Calling Program, Data and Output	p.8
V	Listing of Subroutines	
	SOLVE F(X) AINVIT CHOLDE CHOLSU	p. 10 p. 12 p. 13 p. 15 p. 16
VI	Description of Matrix Manipulation Programs	p. 17

Alfred P. Sloan Fellow. Permanent address: Dept. of Physics, SUNY, Stony Brook, New York 11790. Work supported in part by U.S. National Science Foundation grant no. GH037925

I FORMULATION

The superconducting transition temperature (T_c) can be theoretically obtained from the Eliashberg equations 1 if the interaction parameters $\alpha^2 F(\omega)$ and μ^* (characterizing electron-phonon and Coulomb interactions respectively) are known. A simplified version of these equations has been presented by Allen and Dynes 2 based on the work of Bergmann and Rainer 3 . The equations are

$$\rho(T)\psi_{\rm m} = \sum_{\rm n=0}^{\infty} K_{\rm mn}(T)\psi_{\rm n} \tag{1}$$

$$K_{mn} = \lambda^*(m-n) + \lambda^*(m+n+1) - 2\mu^* - \delta_{mn} [2m+1+\lambda^*(0) + 2\sum_{k=1}^{m} \lambda^*(k)]$$
 (2)

$$\lambda^*(\ell) = 2 \int d\omega \, \omega \alpha^2 F(\omega) / \left[\omega^2 + (2\pi \ell T)^2\right]$$
 (3)

where the eigenvectors ψ are related to the gap parameter $\Delta(i\omega_m) \equiv \Delta_m$. The value of T_c is defined as that temperature where the maximum eigenvalue $\rho(T)$ becomes zero. In searching for the maximum eigenvalue of a matrix K of infinite dimension, it is useful to note that the sequence of maximum eigenvalues ρ_N of the principal minors K (of order N by N) form a series of monotonically increasing bounds to ρ . The procedure used for solving eq (1) for T_c is to solve successively the problems truncated at N = 1, 2, 4, 8, 16, 32, and 64. We find that the solution of order 64 x 64 has accurately converged for materials with $T_c/\sqrt{<\omega^2>} > 0.01$ or $\lambda > 0.5$, where λ is the electron-phonon coupling strength

$$\lambda = 2 \int d\omega \alpha^2 F(\omega) / \omega = \lambda^*(0)$$
 (4).

In practice it is not easy to calculate T_c directly from $\alpha^2 F$ and μ^* . It is much more convenient to assume a value for T_c and vary the amplitude of $\alpha^2 F$ (i.e. vary λ keeping the shape of $\alpha^2 F$ fixed.) This way a curve of T_c as a function of λ (for fixed μ^*) can be generated, and the value of T_c can be graphically interpolated from the known value of λ . The phonon coupling enters the kernel (eq.2) only through the function λ^* (eq.3). We define a function f(x) which is a normalized version of λ^*

$$\lambda^*(\ell) = \lambda f \left(2\pi \ell T / \sqrt{\langle \omega \rangle}\right) \tag{5}$$

$$f(\mathbf{x}) = (2/l) \int_{-\infty}^{\infty} d\omega \omega \alpha^{2} F(\omega) / \left[\omega^{2} + \langle \omega^{2} \rangle_{\mathbf{x}}^{2} \right]$$
 (6)

$$\langle \omega^{n} \rangle = (2/\lambda) \int d\omega \omega^{n-1} \alpha^{2} F(\omega)$$
 (7)

where $\sqrt{\langle \omega^2 \rangle}$ is a convenient rms phonon frequency. The function $f(\mathbf{x})$ takes the value 1 at \mathbf{x} = 0 and goes asymptotically to $1/\mathbf{x}^2$ at large \mathbf{x} . For intermediate values of \mathbf{x} , f is a monotonically decreasing function whose precise shape contains the information about the shape of $\alpha^2 \mathbf{F}$ which is relevant to $\mathbf{T}_{\mathbf{c}}$. We next split the kernel K into two parts, K + λK , where K and K are both independent of λ .

$$A_{mn} = -2\mu^* - (2m+1)\delta_{mn}$$

$$B_{mn} = f(2\pi(m-n)T_c/\sqrt{\omega^2})$$

$$+ f(2\pi(m+n+1)T_c/\sqrt{\omega^2})$$

$$- \delta_{mn} \left[1 + 2\sum_{\alpha=1}^{\infty} f(2\pi \alpha T_c/\sqrt{\omega^2})\right]$$
(9)

The procedure now becomes to assume a value for $T_c/\sqrt{<\!\omega^2\!>}$, construct the principle minors A_N and B_N , and finally to solve for the coupling strength λ_N in Nth order using

$$\left(A_{NN} + \lambda_{NN} B_{NN} \right) \psi_{N} = 0 \tag{10}$$

IN DESCRIPTION OF THE PROGRAMS

The actual setting up and solving of eq.(10) is done by a subroutine SOLVE (TC, EL, CC, NALF), where TC is the assumed value of $T_c/\sqrt{\langle \omega^2 \rangle}$ and EL is an array of dimension 7 which returns seven successive approximations to λ obtained by solving K_W with dimension $N = 2^{\circ}$, 2° , ..., $2^{\circ} = 64$. The parameter CC is the given value of μ^* , which we define by

$$\mu^* = \mu / \left[1 + \mu \ln(\omega_D / \sqrt{\langle \omega^2 \rangle}) \right]$$
 (11)

There is some confusion about μ^* in the literature. The purpose of using μ^* instead of μ is to make the effective Coulomb cutoff equal to the phonon cutoff. The Coulomb cutoff is approximately the electron plasma frequency ω_p , while the phonon cutoff has been taken to mean two distinct things: either a frequency of order the maximum phonon frequency or the actual maximum frequency at which integration is cut off in a computer program. The second meaning is more natural in many ways but suffers from the disadvantage of arbitrariness. Therefore we have opted for the former meaning. Fortunately μ^* is not sensitive to small variations (such as replacing ω_p by E_F or $\sqrt{<\omega^2>}$ by Θ_D .) However, some authors, notably

McMillan¹⁴, have used instead of $\sqrt{\langle \omega^2 \rangle}$, a cutoff about 10 times larger. This is enough to affect μ^* by 30%. In the actual computations described here, an effective $\mu^*(N)$ is used which depends on the truncation point $\omega_N = 2\pi N T_c$, namely

$$\mu^*(N) = \mu^*/\left[1 + \mu^* \ln(\sqrt{\langle \omega^2 \rangle} / \omega_N)\right]$$
 (12)

This procedure was found to be advantageous to obtain rapid convergence and eliminate small fluctuations in $T_c(\lambda)$ which tend to occur if a fixed μ^* is used and truncated at some value of ω_n .

The parameter NALF should be read in as 1 if the data $(\alpha^2 F)$ is new and as some other integer if previously read data is to be re-used.

The subroutine SOLVE obtains the function f(x) through a function subprogram called F(X). This program has three different exit points. If the argument X is negative, the subprogram F does not actually calculate f(x) but instead performs the preliminary operations. These consist of reading data and calculating various parameters which are immediately printed out. These are summarized below.

Data: TITLE, NAF, DOM (FORMAT 3A4, I5, F5.2) AF(I), I = 1, NAF (FORMAT 10E8.3)

TITLE = name of material such as LEAD NAF = number of data points for $\alpha^2 F$ DOM = increment $\Delta \omega$ of data points in meV. $AF = \alpha^2 F$

Print-out: TITLE

 $ELA = \lambda$

 $OM1 = <\omega> in meV$

 $OM2 = <\omega^2 > in meV^2$

 $OM^{1/4} = \langle \omega^{1/4} \rangle \text{ in meV}^{1/4}$

When the argument X is positive, the subprogram F calculates f(x) either by Simpson's rule integration (when $x \le 5$.)or by the first two terms of a large x expansion (when x > 5.), namely

$$f(x) \approx (1 - \langle \omega^4 \rangle / \langle \omega^2 \rangle^2 x^2) / x^2$$
 (13)

The final step is to solve eq.(10). For this purpose a general program was used called AINVIT, which was written by C.M.M. Nex. This program solves for λ very efficiently using inverse iteration. At each stage (except the first one, N = 1) the previous value λ_{N-1} and eigenvector ψ_{N-1} are used as the initial trial values for the Nth stage. The actual solution is performed by a subroutine named CHOLSU, after Cholski decomposition has been performed by a subroutine named CHOLDE. Both of these programs were also written by C.M.M. Nex. A description and listing of the programs AINVIT, CHOLDE, and CHOLSU is attached.

The package described here is completely self-contained. The user needs to provide only a brief calling program and data. A sample calling program, data, and output are given in the next section. The data shown are $\alpha^2 F(\omega)$ for lead as measured by Rowell and McMillan 5 . Several choices of μ^* and $T_c/\sqrt{<\omega^2>}$ have been made which illustrate the convergence, which is very rapid for $\mu^*=0$ and $T_c/\sqrt{<\omega^2>}=0.1$. The convergence is only slightly less rapid when $\mu^*=0.1$. Convergence is slower for small T_c . When

 $\mu^*=0.1$ at $T_c/\sqrt{<\omega^2>}=0.01$, the approximate limit of this program has still not been reached, but convergence will cease being adequate for somewhat smaller values of T_c . To handle smaller T_c , the matrix would have to be enlarged beyond 64 x 64, and perhaps a coarser mesh than the exact Matsubara points ω_n could be used. There is no limit on the maximum permissible value of $T_c/\sqrt{<\omega^2>}$ which this program can handle. The output lists $T_c/<\omega>$ as well as $T_c/\sqrt{<\omega^2>}$, and gives not only the actual μ^* (eq.11) but also the running values of $\mu^*(N)$ (eq.12). The computing time on an IBM 370 machine for finding seven successive approximations to λ for a given T_c and μ^* is less than 1 sec.

ACKNOWLEDGEMENTS: The help of C.M.M. Nex has been invaluable in constructing these programs. Permission to use his programs AINVIT, CHOLDE, and CHOLSU is gratefully acknowledged.

III REFERENCES

- G.M. Eliashberg, JETP 11, 696 (1960); 12, 1000 (1960).
 Also see for example, J.R. Schrieffer, Superconductivity (W.A. Benjamin, New York, 1964) and D.J. Scalapino, in Superconductivity, edited by R.D. Parks (M. Dekher, New York, 1969).
- 2. P.B. Allen and R.C. Dynes, to be published.
- 3. G. Bergmann and D. Rainer, Z. Phys. 263, 59 (1973).
- W.L. McMillan, Phys. Rev. <u>167</u>, 331 (1968);
 W.L. McMillan and J.M. Rowell, in <u>Superconductivity</u>, edited by
 R.D. Parks (M. Dekher, New York, 1969).
- 5. J.M. Rowell and W.L. McMillan, Phys. Rev. Letters 14, 108 (1965).

IV SAMPLE CALLING PROGRAM, DATA, AND OUTPUT

Calling Program

	and the second second			,	2 2 May 141 July 1948	F
0001		COMMON	OMI.	OM2,OM	4	
0002		DIMENS	ION E	L(7)		
0003		TC=01	8			
0004		00 20	1=1,2			
0005		TC=TC+	.09			
0006		CC=1(3			
0007		DD 20 .	J=1,2			
0008		CC=CC+(0.1		¥	
0009		NALF=1-	· J-I			
0010		CALL SE	JLVE	TC, EL,	CC, NAL	3
0011	20	CONTINE	JE			
0012		STOP				
0013		END				

Date

```
LEAD
             210
.000E-0 .571E-4 .228E-3 .514E-3 .913E-3 .143E-2 .205E-2 .331E-2 .607E-2 .765E-2
"101E-1 .112E-1 .137E-1 .148E-1 .177E-1 .196E-1 .243E-1 .297E-1 .389E-1 .481E-1
-599E-1 .694E-1 .799E-1 .884E-1 .984E-1 .107E-0 .120E-0 .134E-0 .154E-0 .177E-0
.216E-0 .274E-0 .355E-0 .443E-0 .538E-0 .629E-0 .722E-0
                                                       .804E-0 .852E-0 .874E-D
.889E-0 .918E-0 .960E-0 .101E 1 .103E 1
                                                               .864E-0 .819E-D
                                       .997E-0 .939E-0
                                                       .907E-0
                                                               .415E-0 .398E-D
.760E-0 .698E-0 .635E-0 .590E-0 .552E-0 .515E-0 .473E-0
                                                        -440E-0
.381E-0 .365E-0 .348E-0 .343E-0 .350E-0 .356E-0
                                                       .360E-0 .361E-0 .363E-0
                                                       .568E-0 .650E-0 .742E-D
.3676-0 .377E-0 .388E-0 .401E-0 .418E-0 .450E-0 .500E-0
.851E-0 .980E-0 .113E 1 .124E 1 .126E 1 .114E 1 .928E-0 .698E-0 .490E-0 .324E-D
.201E-0 .123E-0 .883E-1 .664E-1 .613E-1 .598E-1 .568E-1 .507E-1 .436E-1 .377E-1
.345E-1 .321E-1 .290E-1 .252E-1 .214E-1 .180E-1 .150E-1 .116E-1 .843E-1 .711E-2
.560E-2
```

Output

```
LEAD
ELA= 1.549 DM1= 5.2 DM2= 0.310E+02 DM4= 0.146E+04
GIVEN TC =0.1000E-01 IN UNITS OF RMS UMEGA
      TC =0.1067E-01 IN UNITS DF DMEGA
MUSTAR = 0.0
MATRIX DIM =
                   LAMBDA=0.1008E+01
                                       MSTAR =
                Š
MATRIX DIM =
                2
                   LAMBDA = 0.6105E+00
                                      MSTAR =
                                               0.0
MATRIX DIM =
               Éş.
                   LAMBDA=0.4433E+00
                                       # STAR #
                                               0.0
MATRIX DIM =
               2
                   LAMBDA=0.3628E+00
                                      MSTAR
                                               0.0
MATRIX DIM =
               16
                   LAMBDA=0.3281E+00
                                      MSTAR =
                                               0.0
MATRIX DIM =
              32
                  LAMBDA=0.3179E+00
                                       MSTAR =
                                               0.0
                  LAMBDA=0.3163E+00 MSTAR=
MATRIX DIM = 64
                                               0.0
GIVEN TC =0.1000E-01 IN UNITS OF RMS OMEGA
      TC =0.1067E-01 IN UNITS OF DMEGA
MUSTAR = 0.1000
MATRIX DIM =
               2
                  LAMBDA=0.1166E+01
                                       MSTAR =
                                               0.0783
MATRIX DIM =
               2
                  LAMBOA=0.7453E+00 MSTAR=
                                               0.0828
HATRIX DIM =
               20
                   LAMBDA=0.5738E+00
                                      MSTAR =
                                               0.0879
MATRIX DIM =
               8
                   LAMBDA=0.4996E+00
                                      MSTAR *
                                               0.0936
MATRIX DIM =
               16
                   LAMBDA = 0 -4804E+00
                                      MSTAR =
                                               0.1001
              32
MATRIX DIM =
                   LAMBDA=0.4888E+00
                                      MSTAR =
                                               0.1075
MATRIX DIM = 64 LAMBDA=0.4985E+00 MSTAR=
                                               0.1162
GIVEN TC =0.1000E+00 IN UNITS OF RMS OMEGA
      TC =0.1067E+00 IN UNITS OF DMEGA
MUSTAR = 0.0
MATRIX DIM =
                5
                   LAMBDA=0.1557E+01
                                      MSTAR =
                                               0.0
MATRIX DIM =
               2
                   LAMBDA = 0 - 1111E + 01
                                      #STAR=
                                               0.0
MATRIX DIM =
               Ex
                   LAMBDA = 0 . 100 7E + 01
                                      MSTAR =
                                               0.0
MATRIX DIM =
                8
                   LAMBDA=0.9912E+00
                                      MSTAR=
                                               0.0
MATRIX DIM = 16
                   LAMBDA=0.9898E+00
                                       MSTAR =
                                               0.0
MATRIX DIM =
              32
                   LAMBDA=0.9897E+00
                                       MSTAR =
                                               0.0
MATRIX DIM = 66
                  LAMBDA=0.9897E+00 MSTAR=
                                               0.0
GIVEN TC =0.1000F400 IN UNITS OF RKS UMEGA
      TC =0.1067E+00 IN UNITS OF DMEGA
MUSTAR = 0.1000
MATRIX DIM =
                  LAMBDA = 0.1855E+01
               3
                                       MSTAR=
                                               0.0956
MATRIX DIM =
                2
                  LAMBDA=0.1411E+01
                                      MSTAR=
                                               0.1023
MATRIX DIM =
               24
                  LAMBDA=0.1356E+01
                                      MSTAR=
                                               0.1102
MATRIX DIM =
               8
                  LAMBDA = 0 . 1382E + 01
                                      MSTAR =
                                               0.1193
MATRIX DIM =
                                               0.1300
              16
                  LAMBDA=0.1396E+01
                                      MSTAR =
MATRIX DIM =
              32
                  LAMBDA=0.1399E+01
                                      MSTAR=
                                               0.1429
MATRIX DIM =
              64 LAMBDA=0.1400E+01
                                      MSTAR=
                                               0.1586
```

V. LIST OF SUBROUTINES

SOLVE

```
subroutine solve(tc,el,cc,nalf)
      common om1, om2, om4
      dimension a(64,64), b(64,64), y(64), el(7), x(64), z(64)
      dimension nt(64), c(32, 32), ay(128)
c solves for lambda given tc in units of om (rms omega)
c cc is mustar, om is rms freq in millivolts
c el contains seven successive approximations to lambda
c nalf is 1 if a new a**2*f is to be read
    1 format(/11h given tc =,e10.4,22h in units of rms omega )
    2 format(13h matrix dim =, i4,9h lambda=,e10.4,8h mstar=,f8.4)
    3 format(7x, 4htc = ,e10.4, 18h in units of omega)
    4 format(9h mustar =,f7.4)
      if (nalf .ne. 1) go to 25
      dum=f(-1.)
   25 continue
      td=tc*sqrt(om2)/om1
      print 1,tc
      print 3,td
      print 4,cc
      pi=3.14159
     p=2.*pi*tc
c use delta fn answer for first approx eigenvalue
      e=(1.+2.*cc)*(1.+p*p)
c construct first approx eivenvector
      y(1)=1.
      do 30 i=2,64
   30 y(i) = 0.
c construct the missing parts of the matrix
      do 200 n=1,7
      cm=cc
      np=nc+1
      nc=nc*2
      if (n .eq. 1) np=1
      if (n .eq. 1) nc=1
c calculate missing values of ay(n), the renormalization
      il=nc+1
      iu=2*nc
      if (n \cdot eq. 1) il=1
      do 34 i=i1,iu
      s=float(i)*p
   34 \text{ ay(i)} = f(s)
```

SOLVE (continued)

```
if (abs(cc) .lt. 1.e-04) go to 35
c renormalize mustar to the specific cutoff n
      xn=float(nc)
      cm=1./(1./cc-alog(p*xn))
   35 continue
     do 100 i=1,nc
      do 100 j=1,i
      a(i,j) = -2.*cm
      if (i .ne. j) go to 40
      a(i,j)=a(i,j)-2.*float(i)+1.
      if (i .lt. np) go to 100
   40 if (i .1t. np) go to 80
     b(i,j)=ay(i+j-1)
      if (i .ne. j) b(i,j)=b(i,j)+ay(i-j)
      if (i .ne. j) go to 80
      if (n .eq. 1) go to 100
      jm=j-1
     do 70 l=1,jm
   70 b(i,j)=b(i,j)-2.*ay(1)
     go to 100
   80 a(j,i)=a(i,j)
     b(j,i)=b(i,j)
  100 continue
c store a in c because ainvit overwrites a
      if (n.eq. 7) go to 110
      do 105 i=1,nc
      do 105 j=1,nc
  105 c(i,j)=a(i,j)
  110 continue
      ifail=0
      eps=0.002
      call ainvit(a,b,e,64,nc,y,eps,5.0e-06,x,z,30,nt,ifail)
      print 2,nc,e,cm
c eigenvector x becomes next approx eigenvector
c restore a out of storage in c
      el(n)=e
      test=0.01*e
     do 120 i=1,nc
     y(i) = x(i)
     do 120 j=1,nc
  120 a(i,j)=c(i,j)
  200 continue
      return
      end
```

F(X)

```
function f(x)
c x is 2 pi n tc/om (rms omega)
      common om1, om2, om4
      dimension af(150), title(3)
    1 format(3a4,i4,f10.4)
    2 format(3a4)
    3 format(5f8.3)
    4 format(5h ela=,f6.3,5h om1=,f6.1,5h om2=,e10.3,5h om4=,e10.3)
      if (x .ge. 0.0) go to 100
c read data for a2f with dom=freq. incr. in milliv.
      open(unit=1,file='a2f.d',status='old')
      read(1,1) title,naf,dom
      write(6,2) title
      read(1,3) (af(i), i=1, naf)
      close(unit=1,status='keep')
c integrate to get ela, om1, etc.
      e = 0.0
      01=0.0
      02 = 0.0
      04 = 0.0
      om=0.0
      is=-1
      do 50 i=1, naf
      om=om+dom
      is=-is
      si=2.0
      if (is .gt. 0) si=4.0
      e=e+af(i)*si/om
      o1=o1+af(i)*si
      o2=o2+af(i)*si*om
   50 \text{ o4} = \text{o4} + \text{af(i)} * \text{si*om*om*om}
      ela=2.0*e*dom/3.0
      om1=2.0*o1*dom/(3.0*ela)
      om2=2.0*o2*dom/(3.0*ela)
      om4=2.0*o4*dom/(3.0*ela)
      write(6,4) ela, om1, om2, om4
      rmsom=sqrt(om2)
      rms=rmsom*11.605
      write(6,*)' rms frequency=',rmsom,' (meV) ',rms,' (K)'
      f=1.0
      return
  100 if (x .gt. 5.0) go to 300
      om=0.
      is=-1
      s=0.
      do 200 i=2, naf
      is=-is
      si=2.0
      if (is .gt. 0) si=4.0
      om=om+dom
  200 s=s+si*om*af(i)/(om*om+om2*x*x)
      f=2.0*s*dom/(3.0*ela)
      return
  300 f=(1.0-om4/(om2*x)**2)/(x*x)
      return
      end
```

AINVIT

```
subroutine ainvit(a,b,e,nr,nc,y,eps,emach,x,z,nmx,nt,ifail)
      dimension b(nr,nc), a(nr,nc), y(nc), x(nc), z(nc), nt(nc)
c symmetric version - overwrites the lower triangle of a only
      n=nc
      dun=e*e
      if (ifail) 30,33,30
   30 dx = 0.
      dy=0.
      do 32 i=1,n
      d1 = -a(i,i) *y(i)
      d2=-b(i,i)*y(i)
      do 31 j=1,i
      d1=d1+a(i,j)*y(j)
   31 d2=d2+b(i,j)*y(j)
      do 34 j=1,n
      d1=d1+a(j,i)*y(j)
   34 d2=d2+b(j,i)*y(j)
      dx=dx+y(i)*d1
   32 dy=dy+y(i)*d2
      e=dx/dy
   33 ifail=0
      do 2 i=1,n
      do 1 j=1,i
    1 a(i,j)=a(i,j)+e*b(i,j)
    2 z(i) = 0.0
      call cholde(a,nt,nr,nc,emach)
      dy=0.0
      iac=3
      ncpt=0
      noit=0
    3 do 4 i=1,n
      x(i)=b(i,i)*y(i)
      do 35 j=1,n
   35 x(i) = x(i) - b(j,i) * y(j)
      do 4 j=1,i
    4 x(i) = x(i) - b(i,j) * y(j)
      call cholsu(a,nt,x,nr,nc)
      xnorm=0.
      icpt=ncpt
      do 6 i=1,n
      d=abs(x(i))
      if (d-xnorm) 6,6,5
    5 xnorm=d
      ncpt=1
    6 continue
      dx=1.0/x(ncpt)
      do 7 i=1,n
    7 x(i)=x(i)*dx
```

AINVIT (continued)

```
noit=noit+1
  iac=iac+1
  if (abs(dx-dy)-eps) 20,20,8
8 if (noit-nmx) 9,9,19
9 if (icpt-ncpt) 10,11,10
10 iac=1
  go to 17
11 if (iac-3) 17,12,12
12 do 15 i=1,n
  yr = (z(i) - y(i)) **2
  dum=z(i)-2.0*y(i)+x(i)
  if (abs(dum)-emach) 13,13,14
13 yr=0.0
  go to 15
14 yr=yr/dum
15 x(i)=z(i)-yr
  do 16 i=1,n
16 y(i) = x(i)
  yr=(dz-dy)**2
  yr=yr/(dz-2.0*dy+dx)
  dx=dz-yr
  iac=1
17 do 18 i=1,n
  z(i) = y(i)
18 y(i) = x(i)
  dz=dy
  dy=dx
  go to 3
19 ifail=-nmx-1
20 eps=abs(dx-dy)
  e=e+dx
  ifail=ifail+noit
  return
   end
```

CHOLDE

```
subroutine cholde(a,nt,nr,nc,emach)
   dimension a(nr,nc),nt(nc)
   if (nc .eq. 1) return
   n=nc
   do 10 ii=2,n
   i=ii-1
   yr=abs(a(i,i))
   in=i
   do 2 j=ii,n
   if (yr-abs(a(j,j))) 1,2,2
 1 yr=abs(a(j,j))
   in=j
 2 continue
   nt(i)=in
   if (in-1) 6,6,3
 3 do 12 j=1,i
   dum=a(i,j)
   a(i,j)=a(in,j)
12 a(in,j)=dum
   do 4 j=1, in
   dum=a(j,i)
   a(j,i)=a(in,j)
 4 a(in,j) = dum
   do 5 j=in,n
   dum=a(j,i)
   a(j,i)=a(j,in)
 5 a(j,in) = dum
   dum=a(i,i)
   a(i,i)=a(in,in)
  a(in,in)=dum
 6 a(i,i)=sign(sqrt(yr),a(i,i))
  if(abs(a(i,i))-emach) 7,7,8
 7 \ a(i,i) = emach*1.0e-05
 8 do 9 j=ii,n
   a(j,i)=a(j,i)/a(i,i)
   dum=a(j,i)*sign(1.0,a(i,i))
   do 9 k=ii,j
9 a(j,k)=a(j,k)-dum*a(k,i)
10 continue
   if (abs(a(n,n))-emach) 13,13,14
13 a(n,n) = emach*1.0e-05
   return
14 a(n,n) = sign(sqrt(abs(a(n,n))), a(n,n))
   return
   end
```

CHOLSU

```
subroutine cholsu(a,nt,x,nr,nc)
   dimension a(nr,nc),nt(nc),x(nc)
   if (nc .eq. 1) go to 10
   n=nc
   do 2 ii=2,n
   i=ii-1
   in=nt(i)
   if (in-i) 1,2,1
 1 dum=x(in)
   x(in)=x(i)
   x(i) = dum
 2 continue
   x(1) = x(1) / abs(a(1,1))
   do 4 ii=2,n
   i=ii-1
   do 3 j=1,i
 3 \times (ii) = \times (ii) - a(ii,j) \times (j)
 4 x(ii)=x(ii)/abs(a(ii,ii))
   x(n)=x(n)/a(n,n)
   do 6 ij=2,n
   ii=n-ij+2
   i=ii-1
   x(i) = sign(1.0, a(i, i)) *x(i)
   do 5 j=ii,n
 5 x(i)=x(i)-a(j,i)*x(j)
 6 \times (i) = \times (i) / abs(a(i,i))
   do 8 ii=2,n
   i=n-ii+1
   in=nt(i)
   if (in-i) 7,8,7
 7 \text{ dum}=x(in)
   x(in)=x(i)
   x(i) = dum
 8 continue
   return
10 x(1)=x(1)/a(1,1)
   return
   end
```

VI DESCRIPTION OF MATRIX MANIPULATION PROGRAMS

AINVIT

SUBROUTING AINVIT(A,B,E,NR,NC,Y,LPS,LMACH,X,Z,NMX,NT,IFAIL)
DIMENSION B(NR,NC),A(NA,NC),Y(NC),X(NC),Z(NC),NT(NC)

<u>FURPOSE</u> To find a root of the eigenproblem $(A+\lambda B)x=0$ using inverse iteration. The root nearestv a given number E is located or that nearest a given eigenvector by first forming the Rayleigh quotient. For the method see Wilkinson "The Algebraic Eigenvalue Problem)

input

A	matrix as in problem definition	(overwritten)
B E NR	matrix as in problem definition approximate root (if appropriate) First dimension of arrays A and B in calling routine	(overitten)
NC Y	dimension of matrices of problem initial 'approximate' eigenvector (1,1,1,1) will often suffice	(overwritten)
EPS	accuracy required in eigenvalue	(overwritten)
MMACH	machine accuracy (5.0E-6 in single precision)	
NIX	maximum number of iterations allowed (~30)	
IFAIL	= 0 if approximate eigenvalue given ‡ 0 if approximate eigenvector given	(overwritten)

Z , AT are used as working space

output

r computed eigenvalue

EPS estimated error in computed eigenvalue

X computed eigenvector

IFAIL = 0 accuracy not achieved after NMX iterations ∠ 0 the number of iterations used

notes

this routine uses GELIM and SUBS if A and B are symmetric then calls to these subroutines should be replaced by calls to CHOLDE and CHOLSU

SUBROUTINE CHOLDE (A, NT, NR, NC, FMACH)
DIMENSION A(NR, NC), NT(NC)

 \circ

purpose to perform Cholski decomposition onn a real symmetric matrix. A is factorised into U^T B U where D is a diagonal matrix whose non-zero elements are ± 1 . These signs are stored with the diagonal elements of U thus V $\det(A) = \left| \text{product of diagonal elts. of } U \right|^2 \times 3$ * sign of the product. Only the lower triangle of A need be defined.

input

A matrix to be factorised; lower trianglem only

(overwritten)

0

MR first dimension of array A in calling

NC dimension of matrix of problem

EMACH machine accuracy

output

A the matrix U stored in lower trangle

NT list of pivotal rpws

CHOLSU

SUBROUTINE CHOLSU(A,NT,X,NR,NC) DIMENSION A(NR,NC),NT(NC),X(NE)

purpose to solve the set of equations Ax = b, A real symmetric, after A has been factorised by CHOLDE is compute $A^{-1}b^{-1}$

input

A output from CHOLDE

NT output from CHOLDE

X right hand side of matrix equation; & (overwritten)

NR first dimension of array A in calling routine

NC dimension of matrix A

output

X calculated solution = $A^{-1}b$