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Introduction

Understanding the thermal properties of the minerals that make up the earth’s mantle is
important for understanding and modeling the earth at large. This is especially true when
considering heat flow emanating from deep inside the earth, which is responsible for
much of the dynamic behavior expressed at the earth’s surface. The thermal conductivity
of a material can be thought of as the efficiency of heat transport through the material due
to a thermal gradient. The thermal conductivity of a material is given by the heat flux
through the material divided by the temperature gradient across the material.
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Where k is thermal conductivity measured in units of power per unit length per unit
temperature, Q is heat flow measured in power per unit area, A is the cross-sectional area
of the material, t is time, L is the length of the material in the direction of heat flow, and
AT is the temperature difference across the material. An experimental apparatus for
measuring thermal conductivity is shown in Diagram 1.

Heateq

s | Ihermometer

Insulation T4 AT
L’\/W./\M F

Sample

Diagram 1: Apparatus for measuring thermal conductivity (P. Allen, lecture notes,
2007, July 3.)

In such an apparatus one side of the material in question is held in thermal equilibrium
with a thermal reservoir while the temperature of the other side is increased using a
heater. The power output of the heater is measured as well as the temperature on both
sides of a sample of known length and cross-sectional area and from this the thermal
conductivity can be measured. Many experiments are carried out on high-temperature,
high-pressure earth minerals in hopes of determining their physical characteristics, but



such an experiment using the above apparatus would be highly impractical, making
experimental determination of the thermal conductivity of earth minerals at the high
temperatures and pressures of the earth’s mantle nearly, if not completely, impossible.
Since we lack any means to experimentally measure thermal conductivity of minerals at
the pressure and temperature conditions of the mantle, we must create a computational

model in order to gain some insight into the problem.

Methods

In 1954-55 Fermi, Pasta, and Ulam performed a computational experiment on a
dynamical, one-dimensional string of particles connected by springs that exerted non-
linear forces on neighboring particles. If the particles had been connected by springs
with simple, linear forces, the forces between particles would be given by Hooke’s Law.

Where F is the force between particles, k is a constant, and x; is the displacement of the i
particle from its equilibrium position. Considering a one-dimensional string of particles
connected in such a way gives rise to simple harmonic motion of the string as shown in
Figure 1. When the end-points of the model are fixed in place as in the Fermi, Pasta,
Ulam problem, the model produces a string of particles that can vibrate as a standing
wave. Note that displacements plotted along the vertical axis are actually horizontal

F=k(x;,+x,-2x)

displacements and are plotted on the vertical axis for clarity.
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Figure 1: Simple Harmonic Motion in 1D Model.
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However, Fermi, Pasta, and Ulam considered a string of particles that were connected by
springs producing non-linear forces given by the following equation.

F=Kk[(x,,, +x, = 2x) + a((x,,, = x.)" = (x; = x,)7)]
Where o was chosen to be 0.25, and initial conditions were chosen so that the non-linear
contribution to the forces between particles was around one-tenth of the linear
contribution. By adding this small, non-linear dependence on the displacement of the
particles to the inter-particle forces, Fermi, Pasta and Ulam hoped to observe the
partitioning of energy among the various degrees of freedom in their model. In a one-
dimensional string of vibrating particles these degrees of freedom are all of the different
normal modes of the vibrational movement. The normal modes of a system are the
different configurations of the system at which each of the pieces of the system oscillate
at the same resonant frequency. The first four normal modes for a one-dimensional string
of particles are illustrated in Figure 2. In such a system, the frequency of the n normal
mode, ,, is given by m,=2sin(nm/2N) where N is the number of particles in the system.
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Figure 2: First Four Normal Modes of 1D Simple Harmonic Motion

Any configuration of the positions of the one-dimensional string of particles can be
thought of as being a sum of the contributions to the particle positions from the different
normal modes of the system. For simple harmonic motion, the amplitudes of the
contribution of each normal mode to the total system, and by extension the contribution
of each normal mode to the total energy of the system, is constant. However, as Fermi,
Pasta, and Ulam saw in their experiment, adding the non-linear term into the equation for



inter-particle forces allowed the redistribution of energy among different normal modes.
This happens when the amplitudes of the contribution from each normal mode to the
system changes due to the anharmonicity introduced by making the force on the particles
non-linear. The redistribution of energy among different normal modes as the
experiment progressed is shown in Figure 3.
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Figure 3: Distribution of Energy Among Normal Modes for FPU Experiment
(Fermi, Pasta, and Ulam. 1955)

In Figure 3 the contributions of the first five normal modes to the total energy is given
for the system for 30,000 cycles of the experiment. In order to familiarize myself with
the FPU problem, and in order to gain some basic experience in scientific modeling, |
reproduced the results of the FPU problem and the results for the energy redistribution
are shown in Figure 4.
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Figure 4: Reproduction of Results of E.nergy Distribution from FPU Problem

Compare these results with snapshots of the positions of the particles in the strings at
various time steps as shown in Figure 5.
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Figure S: Positions of Particles in FPU Experiment (Fermi, Pasta, and Ulam.
1955)



On an atomic scale, real-world materials do not behave harmonically according to
Hooke’s Law. The jostling of particles in a real-world mineral could be broken down
into the different normal modes of the crystal lattice; however, real-world materials
behave anharmonically with energy being continually redistributed among different
normal modes. The fact that energy is allowed to redistribute itself among the different
normal modes suggests that the model considered by Fermi, Pasta, and Ulam may have
potential as a model for investigating the thermal properties of high temperature
minerals computationally.

In the following experiments the interparticle forces were determined using the Fermi,
Pasta, Ulam model for a string of 130 particles separated at equilibrium by 42
dimensionless units (see the appendix for further information). Setting the mass and
spring constant arbitrarily to 1 we arrive at the following equation for the acceleration
of each particle at any given time.

2 2
a;, = (Xt X, —2x) + A (X, — X)) —(X— X)) ]

Where x; is the displacement of the i particle from its equilibrium position. The
positions and velocities of the string were initialized in order to start the system at a given
temperature. For a given configuration of the system the position and velocity of the i
particle are given in terms of the sums of the contributions from each normal mode by the
following equations.

x,(0) = %Zchos(q* i+ ¢,)

v,(0) = —#qu A sin(q*it+ ¢,)

Where N is the total number of particles, w, is the frequency of the qth normal mode,
A, is the amplitude of the q™ normal mode and ¢, is the phase of the normal mode. A,
and ¢4 are given by random numbers distributed according to the following probability
functions.

P(¢,) =$, where 0< ¢, <27

Where m is the mass of each particle, kg is Boltzmann’s constant, and T is the
temperature of the system. The probability functions were analyzed using the Box-



Muller Method in order to produce a set of normal mode amplitudes for a given
temperature. Given a set of normal mode amplitudes, we can assign each particle a
certain position and velocity and therefore start the system at a given temperature.
After the initial positions and velocities of the string were determined, a Verlet
algorithm (see following equation) was employed in order to determine each
subsequent position of the string.

X, (t+ At) =a, (DA’ + 2 x,(t) — X, (t— At)

The time step, At, was set to 1/8 dimensionless units. The string of particles was
modeled with periodic boundary conditions, meaning that the string was looped so that
each “end piece” of the model was attached to the other “end piece”. In this way we
create an identical environment for the motion of each particle that you don’t get when
the end pieces are fixed in place. In addition, this allows for traveling waves to
propagate through the string in a way that is not possible for a fixed end-point string.
Positions of the particles in the system are shown for a given run of the experiment in
Figure 6.
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Figure 6: Positions of Particles With System Initialized to Given Temperaure
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In Figure 6 the experiment was initialized with kgT=0.125 and with a=0.25. In all the
runs of the experiment energy was calculated by summing the kinetic and potential
energy of each particle of the string. Energy was conserved in the experiments usually
within ~0.05%.



It is possible to look at how energy is moving through our string of particles by
considering the energy current of the string. The energy current of the string can be
determined by considering the energy contained within all of the particles of the system
and the work that each particle is doing on its neighboring particles. The energy
current is given by the following equation.
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Where L is the total length of the string (i.e. the equilibrium distance between particles,
42, times the number of particles), V is the potential energy of each particle due to
neighboring particles, and u; is given by the following equation.

u =10+ X,

The first term represents the energy current due to the movement of each particle and
the energy contained within each particle. The second term represents the work each
particle is doing on its neighboring particles (i.e. the displacement derivative of the
potential energy times the actual distance between particles.

There is another way to calculate energy current that we used to check the accuracy of
our formulation of energy current. It is given by the following equation.

1 , Ldw
S= —mw A —2
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Where the quantity Equz A q2 represents the energy due to the contribution of the q™

. . . w
normal mode to the positions and velocities of the system and the quantity —

gives

the velocity of the ™ normal mode. The amplitude of each normal mode is calculated
at any given time by the following equations.
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Where i=(-1)""* and | now represents the position of a particle along the string. In order
to convert the amplitude into a real number we simply consider the real and imaginary
partsof A . If...

A, =a+fi
... then...

A=A+



Which can be used in the equation written above to determine the energy current of the
system. The two calculations were found to agree very well over long time periods,
but had small variations over shorter time periods. The two calculations for energy
current for a given experimental run are shown below in Figure 7 for a long time
period and in Figure 8 for a short time period.
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Figure 7: Energy Current from t=0 to t=20000
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Figure 8: Energy Current from t=2000 to t=3000

In each of the graphs the energy current calculated from the normal mode amplitudes is
shown in red and the energy current calculated from the Newtonian energy of the
particles is shown in blue. Though the two calculations agree well over long time
periods, there are inescapable differences between the two for short time periods that
must be addressed. The energy current calculated from the normal mode amplitudes is
technically valid only for harmonic situations and is only an approximation for our
situation given the anharmonic nature of our model. The other calculation of energy
current is exact given that it is based solely on the Newtonian definition of the energy
that can be ascribed to each particle. Thus, for the next phase of our experiments we
considered only the energy current calculated from the sum of the Newtonian energy of
the particles. In addition, the energy current given by the normal mode amplitudes is
much more time consuming to calculate, making further calculations on the energy
current based on this method too cumbersome for the time being. One check we
performed on our calculations of energy current and on the experiment in general was
to decrease the time step used in our experiment in order to ensure the accuracy of the
positions and velocities given by our Verlet Algorithm. We repeated our experiment
with time steps of At=1/8 and At=1/22.6 and calculated the energy current for each
experiment. The results are shown in Figures 9 and 10.
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Figure 9: Energy Current Calculated with At=1/8
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Figure 10: Energy Current Calculated with At=1/22.6

The two runs performed with different time step produced almost exactly the same
results over the period shown, suggesting that there were no problems with our chosen
time step for our experiments. We performed another check on the validity of our
calculation of energy current by setting the coefficient of the non-linear term in our
acceleration equation, a, equal to zero. By doing so we create a simple harmonic
oscillating system which is expected to have a constant energy current. In fact this is
what is observed which further confirms our calculation of energy current.

Eventually, we conducted ten runs of the experiment, each initialized with the same
conditions as before. However, our method of initializing the experiment to a certain
temperature involves a semi-random assignment of normal mode amplitudes, causing
the actual energy, E, of each of the runs to vary slightly from the expected mean value
of NkgT. In order to standardize the runs, the initial energy was calculated using the
given normal mode amplitudes to initialize the string. The system was then
reinitialized by multiplying each of the normal mode amplitudes by a factor of
(NkgT/E)". This caused the energy of each run to agree with a maximum deviation
from NkgT of about 1.5%.



The next calculation we made was for the energy current correlation function.
(S(S(t+At))

The energy current correlation function calculation shows how energy current at a
given time is correlated with values of energy current at varying values of time delays,
At. The energy current correlation function is calculated by taking the average of the
product of S(t) and S(t+At) over an interval of time (that is, for differing values of t)
and then repeating this calculation for different values of At over the same time
interval. In effect, the energy current correlation function tells how much time the
system spends with a given energy current configuration, and in this way it is an
indicator of the effectiveness of heat transport through the system. Consider the case
of the experiment run with simple harmonic motion where the energy current is
constant. If the energy current is constant then energy can be transported through the
system unimpeded as quickly as the velocity of the traveling waves transporting the
energy allows. In such a case, the energy current correlation function will also be
constant and will be equal to the square of the constant value of energy current.
However, when the string of particles is modeled as an anharmonic system it can be
seen from Figure 7 that the energy current is anything but constant and under such a
condition the energy current correlation will drop off rapidly as At gets progressively
larger. A more rapid drop off of the energy current correlation can be interpreted as
representing a system in which energy current changes more rapidly, which, in turn,
can be interpreted as indicating that the system is less effective at transporting heat.
The results of the calculations of energy current correlation for the ten runs of our
experiment are shown in Figure 11 and Figure 12.
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Figure 11: Energy Current Correlation from Ten Runs of Our Experiment
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Figure 12: Average Energy Current Correlation for Our Experiment



As mentioned previously, the concept of the energy current correlation function is
important for understanding the thermal conductivity of a system. In fact, the
mathematical relationship relating the two values in a one-dimensional system follows.

1

= T T (S(t)S(0))dt

0

Where L is the length of the system, kg is Boltzmann’s Constant, T is temperature, and k
is the thermal conductivity of the system. If we could fit an exponential curve to our
calculated energy current correlation function values then we could use the stated
equation to determine a value for the thermal conductivity of our system. It was at this
time that we decided to have a look again at the accuracy of the Verlet Algorithm we
used in this experiment in order to determine if this had anything to do with the accuracy
of the energy current and the energy current correlation functions that we had produce.d.
Once again we decreased our value of At and calculated the energy current for a given
run of our experiment. However, this time we also significantly increased the length of
time over which we compared the different calculated values of energy current using the
different values of At. What we saw was quite surprising and quite disheartening. When
the calculations for differing At values were observed over longer lengths of time than
previously the values calculated for energy current were found to diverge much earlier
than we had hoped as shown in Figure 13.
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Figure 13: Energy Current Calculations for At=1/2048 (red) and At=1/4096 (blue)




It should be observed that the two calculations agree for a certain length of time before
the errors in the Verlet Algorithm start compounding and then the values start drifting
away from each other. The smaller the value of At the greater the length of time over
which the Verlet Algorithm produces accurate results. Also, the smaller the value of At
the longer the length of time a calculation of energy current agrees with a caculation of
energy current made with an even smaller value of At. From Figure 13 we can then
assume that the calculation using At=1/2048 is accurate for about 20,000 units of real
time and the calculation using At=1/4096 is accurate for an extra unknown length of time
after which the Verlet Algorithm surely breaks down as well. This poses a serious
problem because the energy current correlation functions from above were calculated up
to 160,000 units of real time and the value of At was smaller than the calculations from
Figure 13 by a factor of 256 and 512. It is possible to decrease the value of At even
further in order to increase the length of time over which our calculations are accurate.
Then it would be possible to get accurate values for the energy current and the energy
current correlation function which could ultimately be used to determine the thermal
conductivity of our system. This, however, is a problem when you consider that each of
the ten runs used to calculate our energy current correlation function took ~20 minutes to
complete using At=1/8. In order to decrease the value of At and still be able to produce
an accurate energy current correlation function it would also be necessary to increase the
number of time intervals over which we invoke the Verlet Algorithm by the same factor
that we use to decrease At which inevitably increases the length of time required to
complete the calculation in real-world time. Increasing the accuracy of our calculations,
therefore, is unfeasible at the present time. However, I will be passing this project on to
Dr. Philip Allen’s graduate student, Xiao Shen. My recommendations for further work
on this project would be to determine an ideal value of At to insure accuracy of the Verlet
Algorithm over the entirety of the experiment and recalculating energy current and the
energy current correlation function using this new value. To do so, however, would
require writing a program and sending it off for processing using some allotted time on a
super-computer as the calculation is likely to be too time consuming for an ordinary
desktop-like computer.
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Appendix on units and dimensions
(written by P. B. Allen)

The Fermi-Pasta-Ulam problem has three physical quantities with dimension,
namely, the mass m and spring constant k of the harmonic problem, and the anharmonic
spring strength . It is natural to let m define the unit of mass and @’ =V(m/k) define the
unit of time. The harmonic problem has no natural unit of length; an oscillator’s
amplitude is a totally unconstrained variable in harmonic approximation. Anharmonicity
introduces a natural unit of length, k/k’=1/c.. Fermi, Pasta, and Ulam chose the value of
a'to be 0.25. This is equivalent to choosing the unit of length to be //4¢.

Heat current in a crystal introduces another unrelated unit of length, namely the
distance between “atoms.” This distance was totally irrelevant to the Fermi-Pasta-Ulam
investigation of thermalization, because only displacements were examined, and the
forces only depend on the Taylor expansion of the interatomic force law around
equilibrium atom separation. But heat is transferred from one atom to another over an
interatomic distance, and this greatly affects the heat current. We choose this distance to
be 42 in units of //4¢. The reason for this somewhat arbitrary choice is that it is the
correct choice when the true interatomic potential is a Lennard-Jones potential,

v, (r)= e{(gjlz - 2(%)6} (A.1)

This potential has a minimum energy of v=-¢ at a distance of »=¢. The first derivative v’
is 0 at ¥=0. The next two derivatives are k =v"=72¢/07, and 2ck =Vv”" =-1512¢/ 0.
Now we can use Fermi-Pasta-Ulam units k=1/4c« =1 to deduce that the interatomic
distance, g, should be set equal to 42. Of course, the notion of using Lennard-Jones
rather than some other potential function is arbitrary, but it gives a sensible rationale for
making a particular choice for o.



