In BCS theory we need eigenvalues and eigenvectors of a matrix of the type

\[\hat{M} = \begin{pmatrix} \xi & \Delta^* \\ \Delta & -\xi \end{pmatrix} \]

where \(\xi = \epsilon_k - \mu \) and \(\Delta \) is the complex gap, \(|\Delta| \exp(i\phi) \). Clearly the eigenvalues are \(\pm E \) where \(E = \sqrt{\xi^2 + |\Delta|^2} \). It is convenient to express this matrix in terms of the Pauli matrices

\[\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \]

The matrix becomes

\[\hat{M} = E (\hat{r} \cdot \hat{\sigma}) \]

where the unit vector \(\hat{r} \) is given by

\[\hat{r} = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta) , \]

and \(\theta \) and \(\phi \) are defined in the picture below.

The matrix \(\hat{r} \cdot \hat{\sigma} \) can be rotated until \(\hat{r} \) is \(\hat{z} \). The eigenvalues of \(\hat{r} \cdot \hat{\sigma} \) are thus \(\pm 1 \). The rotation matrix \(U \) is defined as

\[\sigma_z = U (\hat{r} \cdot \hat{\sigma}) U^\dagger \quad \text{or} \quad \hat{r} \cdot \hat{\sigma} = U^\dagger \sigma_z U \]

and is the product of two simple rotations, \(U_2 U_1 \), where

\[
U_1 = \begin{pmatrix} e^{i\phi/2} & 0 \\ 0 & e^{-i\phi/2} \end{pmatrix} \quad U_2 = \begin{pmatrix} \cos \frac{\theta}{2} & \sin \frac{\theta}{2} \\ -\sin \frac{\theta}{2} & \cos \frac{\theta}{2} \end{pmatrix} = e^{i(\phi/2)|\Delta|}.
\]

The rotation \(U_1 \) is around the \(z \)-axis by angle \(-\phi \). This causes \(\hat{r} \cdot \hat{\sigma} \) to rotate such that the new vector \(\hat{r}' \) lies in the \(xx \) plane. The rotation \(U_2 \) is around the \(y \) axis by angle \(-\theta \). This causes the new vector \(\hat{r}'' \) to line up with the \(z \) axis. The resulting conjugate rotation matrix \(U^\dagger \)

\[
U^\dagger = \begin{pmatrix} \cos \frac{\theta}{2} e^{-i\phi/2} & -\sin \frac{\theta}{2} e^{-i\phi/2} \\ \sin \frac{\theta}{2} e^{i\phi/2} & \cos \frac{\theta}{2} e^{i\phi/2} \end{pmatrix}
\]

contains as its columns the two orthonormal eigenvectors \(|1> \) and \(|-1> \) of \(\hat{r} \cdot \hat{\sigma} \). The eigenvectors could, of course, each be multiplied by an additional overall phase factor \(\exp(i\psi_1) \) and \(\exp(i\psi_{-1}) \).