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Chapter 1

Introduction

1.1 Material properties of the BaBiO3 family

The discovery of high-Tc superconductivity in copper oxides renewed the inter-

est in superconducting oxides up to the present day. Among these materials

BaBiO3 (BBO) and its related hole doped compounds { potassium (K) in-

serted in barium (Ba) sites Ba1�xKxBiO3 and lead (Pb) in bismuth (Bi) sites

BaPbxBi1�xO3 { is the object of a long-standing controversy. One of the most

attractive feature of the BBO family is the existence of the highest Tc's for

non-copper based superconductors, except for alkali-metal doped C60. For op-

timal doping with Pb the transition temperature is 13K, when doped with

potassium the highest Tc is around 30K [1], [2]. These Tc values are excep-

tionally high in relation to the low density of electronic states at the Fermi

level obtained from tunneling measurements [3]-[5]. Like the cuprates, the

bismuthates exhibit a metal-to-insulator phase transition. The parent com-

pound BaBiO3 is an insulator and remains insulating up to a critical hole
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concentration x = 0:35 for K-doping and x = 0:65 for Pb-doping, where the

material becomes metallic/superconducting. The maximum transition tem-

perature of Tc is reached at the MI-phase-boundary followed by decrease in

Tc with over-doping [1]. Besides some other similarities, there are important

di�erences between the BBO-materials the high-Tc copper-oxides as well. Al-

though both materials are based on a perovskite type structure, the crystal

structure of superconducting phase in the BBO is a cubic perovskite [6] ac-

counting for isotropic superconductivity. This clearly di�ers from the layered

two-dimensional CuO2 structure typical for the cuprate. The charge carriers

in the metallic compounds in BBO are electrons [7], [8] while in copper oxide

they are holes. Moreover, the undoped BBO (as well as BKBO) is diamag-

netic [9] [10] contrary to the anti-ferromagnetic ordering of CuO-compounds.

Finally, a strong oxygen-isotope shift is observed for the superconductivity in

BBO compared to much smaller values in copper oxides [11], [12].

A: Ba, K

B: Bi, Pb

X: O

Figure 1.1: Cubic perovskite structure ABX3: crystal structure of supercon-
ducting BKBO and BPbBO

2



1.2 Mechanism for HTSC and MI-transition

The question whether a global mechanism for high-Tc superconductivity both

for cuprate and BBO exists has still not been answered satisfactorily. HTSC

in the copper-oxides is believed to be crucially related to strong electron-

correlations of the Cu d electrons in the Cu-O band, crossing the Fermi en-

ergy. From band-structure calculations the valence band in the Bi-oxides is a

dispersive Bi-O band made of Bi 6s and anti-bonded with O 2p states [13],[14].

Therefore, the Bi-atoms are regarded to play the role of the Cu-atoms. The

larger size of the Bi 6s orbital leads to a smaller on-site Coulomb repulsion and

a larger band-width. Thus, the material does not exhibit a Hubbard instability

and it seems unlikely that strong electron-electron interaction plays a major

role in the BBO-family. This would also imply that the origin of superconduc-

tivity is di�erent in both materials. Supported by the strong isotope e�ect, a

conventional phonon based pairing mechanism seems more likely in the BBO

family, although the low density of states at the Fermi energy is unfavorable

for BCS-type superconductivity.

Further evidence for the importance of electron-phonon coupling in the

bismuthate comes from the MI-transition. The transition coincides with a

structural change of the perfect cubic perovskite (Pm�3m)) of the supercon-

ducting phase to an orthorhombic lattice (Ibmm) for 0:12 < x < 0:35 (K-

doping). Below x = 0:12 the lattice is monoclinic (I2=m). The later structures

can be obtained from the cubic phase by successively introducing tilting of

the oxygen-octrahedra (orthorhombic) plus alternating symmetric breathing-

in and breathing-out distortions of the oxygens [6]. These structural distor-

tions seem to be responsible for the insulating behavior of the parent com-
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pound BaBiO3, which would be expected to be metallic in a perfect cubic

environment.

It is reasonable to suppose that the electron-phonon interaction is re-

sponsible both for superconductivity and for keeping carriers trapped in the

doped insulating phases. Since the MI-transition is coupled to the highest

Tc values, insight in one mechanism will help to understand the other phe-

nomenum as well. Both states { normal and superconducting{ are still under

active experimental and theoretical investigation.

1.3 Thesis goals

The present work concentrates on the insulating state properties of the bis-

muthate. The goal is to provide some contribution to understand the MI-

transition in the BBO-family which is believed to be based primarily on

electron-phonon interaction. For this purpose a simple model is studied nu-

merically. The model is a simpli�ed version of the Rice-Sneddon model and

includes the band-motion of the Bi 6s-electrons and the electron-phonon term.

It was introduced by Rice and Sneddon [16],[17] and will be presented to-

gether with the algorithm for the numerical calculations in the next chapter.

The insulating behavior of BaBiO3 is the topic of the third chapter. It can be

interpreted in terms of a charge-ordered Peierls insulator. The analytical solu-

tion for the ground state is reviewed and the corresponding numerical results

are shown.

Chapter four studies the insertion of holes as a model for the lightly

doped material. Trapping of charge carriers in small polaron or bipolaron

states will be the important concept. In chapter �ve the low-lying excitations
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of the undoped material, i.e. the formation of self-trapped excitons, is inves-

tigated numerically. Finally in chapter six, the impact of the electron-phonon

interaction on the optical properties is discussed. In each chapter comparisons

of the model predictions with experiments will be made. However, due to the

simplicity of the model only qualitative agreement is expected. The question

is whether this simple model describes the relevant physics of the material

correctly.
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Chapter 2

The Rice-Sneddon model

2.1 The model Hamiltonian

2.1.1 The generic Hamiltonian

In the ideal cubic perovskite structure (Fig.1.1) the cation in the center B is

surrounded by six oxygen anionsX. Charges localized on the B cation interact

via Coulomb forces with the oxygens anions and thus can cause them to move

lowering the total energy of the system. The energy to displace an oxygen is

determined by the charge di�erence nl � nl+1 between adjacent B sites and

strain energy:

El;l+1 =
1

2
Ku2 � gu(nl � nl+1); (2.1)

where K is the elastic constant, u the displacement and g a coupling con-

stant. A quantum mechanical model describing this e�ect must take into

account which B-atom orbitals are occupied, the electron-lattice coupling and

the electron-electron correlations. Thus, the generic Hamiltonian, �rst intro-
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duced by Rice and Sneddon [16], reads:

H = Ht +He�ph +Hph +HC ; (2.2)

where Ht, He�ph, Hph and HC are, correspondingly, the hopping, electron-

phonon, phonon and Coulomb terms.

The BBO-family has a fairly simple set of valence electron states. The

conduction band consists of Bi 6s antibonded with O 2p-states. It is minimally

a�ected by substituting K in Ba sites [14],[18], which justi�es the use of the

same band-structure model for the undoped and doped material. The model

keeps only one electronic degree of freedom, the Bi 6s amplitude with e�ective

hopping only to next neighbor bismuth neighbors:

Ht = �t
X

<l;l0>;�

cyl;�cl0;�: (2.3)

Displacements of the oxygens along the direction of the Bi-O bonds couple

strongly to the Bi 6s electron states. The important lattice degree of freedom

is therefore believed to be the breathing mode distortion of the oxygens. The

oxygens are treated as Einstein oscillators with frequency !0:

Hph =
X
l;�

�
1

2
M!2

0u
2(l; �) +

P 2
l;�

2M

�
: (2.4)

Coupling between electrons and phonons is incorporated through the term:

He�ph =
g

a

X
l;�

e(l)cyl;�cl;�: (2.5)

e(l) is the local breathing amplitude on the l-th Bi atom, de�ned as:

e(l) =
X

�=x;y;z

u(l;+; �)� u(l;�; �) (2.6)
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The notation u(l;�; �) refers to the displacement of the oxygen atom located

~Rl � (a
2
)�̂ with �̂ = x; y; z the Cartesian directions, a the pseudo-cubic lattice

constant and ~Rl the position of the l's Bi atom. Finally, the electron-electron

correlations interact via intra- and inter-site Coulomb interaction:

HC = U
X
l

nl;"nl;# +
X

l 6=l0;�;�0

e2

�j~Rl � ~Rl0 j
nl�nl0�0 (2.7)

a

x

y

u(l,−,y)

u(l,−,x)

u(l,+,y)

u(l,+,x)

Bi3+Bi3+

Bi5+ l

Bi3+ Bi5+

Bi5+

Bi5+

Bi3+

Figure 2.1: The RS-Model

2.1.2 Simpli�cations

The RS-Hamiltonian has been studied under various aspects, in several limits

and with di�erent simpli�cations [19]-[21]. The original paper by Rice and
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Sneddon [16] treated the problem in the t ! 0 limit and concluded that

electrons in BaBiO3 could pair in real space (negative e�ective U). Each

Bi-atom contributes one electron to the system and the nominal valence of

Bi is 4+. Due to the interaction with the lattice, the lattice interaction can

overcome the Hubbard U repulsion leading to an e�ective negative U , which

causes the charges to disproportionate:

2Bi4+ �! Bi3+ + Bi5+: (2.8)

Electron correlations become important in narrow bands, as the time � an

electron spends on a site is related to the band-width W by � = h
W
. The va-

lence band is quite broad, so that in our implementation we treat the opposite

case. The electron-electron interactions are neglected and the hopping term is

taken into account.

Furthermore, since the electron motion is much faster than the motion of the

oxygen atoms, the oxygens are treated adiabatically. The kinetic energy in

Hph is ignored, and the displacements are approximated as classical station-

ary parameters. The size of non-adiabatic e�ects is governed by �h!0=t. Mass

M and frequency !0 of the Einstein oscillators determine the spring constant

K =M!2
0 .

In conclusion, our Hamiltonian reads:

H = �t
X

<l;l0>;�

cyl;�cl0;� � g
X
l;�

e(l)cyl;�cl;� +
X
l;�

1

2
Ku2(l; �): (2.9)

The physics of this Hamiltonian is controlled by one dimensionless parameter

�:

� =
g2

Kt
; (2.10)
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that governs the electron-phonon e�ects. The energy is conveniently measured

in units of t and oxygen-displacements in units of u0 =
p
(t=K). Using the

scaled Hamiltonian ~H = H=t and the scaled displacements ~e the Hamiltonian

rewrites:

~H = �
X

<l;l0>;�

cyl;�cl0;� �
p
�
X
l;�

~e(l)cyl;�cl;� +
X
l;�

1

2
~u2(l; �) (2.11)

2.2 Algorithm for the numerical studies

The Hamiltonian (2.11) can be studied analytically only in very special cases,

e.g. in the case of a half-�lled Bi-band. For all other studies, e.g. doped

ground-state solutions or calculations of excited states, numerical methods

have to be applied. For the numerical studies in this work, a �nite cluster

containing N Bi atoms is chosen and the scaled Hamiltonian is diagonalized

exactly using periodic boundary conditions. The positions ul of the oxygens are

treated as 3N independent parameters. Thus, the total energy is a function

of ~u, a 3N dimensional vector containing the scaled oxygen displacements

~u = (u1; :::; ul::::; u3N):

Etot(~u) = Ee(~u) + EL(~u) =
X
occ

�i(~u) +
1

2
~u � ~u: (2.12)

Ee is the electronic part of the total energy, obtained by occupying the relevant

states i with energy �i, and EL the elastic energy costs.

In order to �nd the ground state, the total energy has to be minimized with

respect to the ul. This is a multidimensional minimization problem which can

be solved with several algorithms. Most of them require the knowledge of the

function's gradient- in our case the force vector ~F , containing the forces F (l)

acting on the l-th oxygen. The expression for ~F can be easily derived.

10



2.2.1 Derivation of the force ~F -expression

The force F (l) acting on the l-th oxygen along the Bi-O bond is given by:

F (l) = �@Etot

@ul
= FL(l) + Fe(l) = �ul � @

@ul
(
X
occ

�ifug) (2.13)

Fe can be evaluated using the eigenvectors 	i projected on position eigenstates

jki:

Fe(l) =
@

@ul

X
i;occ

�ifug = @

@ul

X
i;occ

X
k;k0

h	ijkihkjHjk0ihk0j	ii: (2.14)

The derivative has to be evaluated with the product rule. Only the sum where

the derivative acts on the matrix elements will contribute, since the other two

sums add up to zero using Hj	ii = �ij	ii and h	ij	ii = 1.

Thus:

Fe(l) = �
X
i;occ

X
k;k0

< 	ijk > (
@

@ul
< kjHjk0 >) < k0j	i > : (2.15)

There are only two diagonal matrix elements that dependent on ul. They

correspond to the the Bi positions l and l0 which are next to the l-th oxygen

and read hljHjli = p
�ul and hl0jHjl0i = �p�ul, respectively. Therefore, the

force can be �nally written as:

Fel(l) = �
p
�
X
i;occ

(jh	ijlij2 � jh	ijl0ij2): (2.16)

This means that the force on an oxygen atom along a Bi-Bi bond is propor-

tional to the charge di�erence between neighboring Bi atoms.

2.2.2 The variable metric method

Using the gradient information the variable metric method [22] was applied to

�nd the optimal distortion vector ~u.
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This algorithm is sometimes called quasi-Newton method. It assumes that

Etot(~u) can be locally approximated by a 2nd order Taylor expansion:

Etot(~u) = c�~b � ~u+ 1

2!
~u � Â � ~u; (2.17)

where Â is the Hessian matrix or bare force matrix. The minimum

point ~um in Eq. (2.17) ful�lls:

Â � ~um = ~b: (2.18)

On the other hand, at the current point ~ui we can write, using F (~ui) =

�rEtot(~ui) = ~b� Â � ~ui:

Â � ~ui = �~F (~ui) +~b: (2.19)

Subtracting (2.18) and (2.19) from each other and multiplying Â�1 from the

right de�nes the �nite step ~ui � ~um to get to the exact minimum:

~um � ~ui = Â�1 � ~F (~xi) (2.20)

Since Â is not known, the idea of the variable metric algorithm is to construct

a recursive series Ĥi converging against the inverse Hessian matrix Â�1. The

series Ĥi is constructed according to the Davidon-Fletcher-Powell algorithm:

Hi+1 = Hi +
~�ui 
 ~�ui
~�ui � ~�Fi

� (Ĥi � ~�ui)
 ( ~�Fi � Ĥi)

~�Fi � Ĥi � ~�Fi
: (2.21)

Ĥ0 is initialized as a unit-matrix times the maximum force value of the starting

point u0.

The optimal oxygen positions are then found iteratively:

~ui+1 = ~ui + ~�ui (2.22)

12



with

~�ui = Ĥi � ~ui: (2.23)

This algorithm convergences quadratically in the number of vector dimensions

of ~u for more general smooth functions.

2.2.3 Matrix diagonalization

For each iteration step i in the minimization algorithm, the new wave-functions

have to be calculated to obtain the force ~F . Thus in each step, the Hamilto-

nian has to be diagonalized with the corresponding oxygen-positions. For the

diagonalization of the matrix, the TQLI-method (tridiagonal QL-algorithm

with implicit shifts) was used and the code from the numerical recipes in C

implemented [22].

The algorithm uses a set of similarity transformations S:

A0 = SAS; (2.24)

that leave the eigenvalues unchanged, to diagonalize the matrix.

In a �rst step the symmetric n x n matrix is reduced to a tridiagonal form T ,

by applying a series of n-2 orthogonal Householder transformations Pi. The

tridiagonal matrix is then diagonalized iteratively using the QL-algorithmwith

implicit shifts. Finally the eigenvectors of the original matrix are obtained from

the eigenvectors of T by applying the accumulated transformation:

P = P1P2P3:::Pn�2 (2.25)

to those eigenvectors.

13



The idea behind the QL-algorithm is that any real matrix A can be

decomposed in a form:

A = QL; (2.26)

where Q is orthogonal and L is lower triangular.

The mathematical background of the algorithm is a theorem, which states,

that in the sequence of orthogonal transformations:

As = QsLs (2.27)

As+1 = LsQs = QT
s AsQs (2.28)

As converges to lower triangular form and the eigenvalues �i of A appear on

the diagonal in increasing order of absolute magnitude.

The convergence of the elements asij above the diagonal to zero is determined

by :

asij � (
�i
�j
)s (2.29)

Therefore, the convergence can be slow if the eigenvalues lie close together.

The convergence can be enhanced by the technique of shifting. Subtracting a

matrix k1̂ from A shifts the eigenvalues to �i � k and thus the convergence is

determined by the ratio:

�i � k

�j � k
: (2.30)

In order to maximize the convergence rate for each step s, ks is computed by

diagonalizing the leading 2x2 subdiagonal and ks is chosen as the eigenvalue

closer to a11. The method of implicit shifts does not require ks to be actually
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subtracted from A, which is advantageous for the numerical accuracy. Instead

the shifts enter implicitly, when constructing the orthogonal matrices Qs.

Since QT
s As = Ls, Qs consists of a product of n� 1 orthogonal matrices:

Qs = P s
1P

s
2 ::: ~P

s
n�1; (2.31)

designed to successively annihilate super-diagonal elements in As. In the case

of implicit shifting, the P s
i are Givens transformations and ~Pn�1 is a plane

rotation containing ks as a parameter.

The workload of the TQLI- algorithm is about 30n2 for the diagonaliza-

tion and a total operation count of 3n3 is needed, when both eigenvalues and

eigenvectors are required. For our calculations the eigenvectors are needed to

calculate the force on the atoms.

2.2.4 Summary and further details

The general algorithm for the numerical studies can be summarized in the

following way:

1. Create an initial trial vector ~u for the oxygen positions.

2. Diagonalize the corresponding Hamiltonian matrix.

3. Calculate the force ~F and the matrix Â.

4. Find the new oxygen positions and build the corresponding new Hamil-

tonian matrix.

5. Return to 2 until the displacement vector �~u vanishes (i.e. �~u ��~u <
threshold)
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The minimization algorithm sometimes runs into metastable solutions. There-

fore, di�erent initialization of the starting vector ~u are used.

Besides the shape of the �nite clusters is varied, i.e. the calculations are

not restricted to cubic or orthorhombic clusters but can have more general

shapes. The advantage of this freedom, although it takes some extra e�orts

to construct the corresponding Hamiltonian matrix, is that arti�cial degenera-

cies, which occur by choosing very symmetric cells, can be partly lifted. This

enhances the quality of the numerical results and decreases empirically the

chance to obtain metastable solutions. Especially very asymmetric supercells

with equal length of the translation vectors are most advantageous.
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Chapter 3

The Peierls insulator BaBiO3

3.1 Introduction: 1D-metal-insulator

transitions

The insulating properties of BaBiO3 provide some challenge for theoretical

explanations. Since the conduction band Bi 6s is half-�lled, metallic behavior

is expected in the independent electron picture or from simple band-theory

arguments. Assuming a perfect cubic perovskite structure of the material,

band structure calculations predict a half-�lled broad band made of Bi 6s

electrons anti-bonded with O 2p� states [13],[14], [23]. The size of the 6s

orbital is large and thus, the single electron or band approximation should be

good. However, the real crystal structure of BaBiO3 deviates from the perfect

perovskite symmetry. The oxygen-octahedra show tilting and breathing-type

distortions and therefore suggest that a charge instability for the Bi-sites exists.

Theories, explaining the insulating behavior in this material, can be

roughly divided, whether electron-electron correlations or electron-phonon in-
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teractions are believed to be the dominant process. Both theories were �rst

developed for the one dimensional metal and rest on the observation, that

the Lindhard response function of the one dimensional electron gas �(q) =R
dk
2�

fk�fk+q

�k��k+q
, where fk = f(�k) is the Fermi function, diverges at q = 2kF . The

divergence is due to a particular topology of the Fermi surface, called perfect

nesting. Pairs of states, one full and one empty, that di�er by q = 2kF have

the same energy and therefore, give a diverging contribution to the integral

in �. The divergence of the response function has important consequences. It

implies that an external perturbation V (r) =
R
q
V (q)eiqrdq leads to a diver-

gent charge redistribution �ind(r) =
R
q
�(q)V (q)eiqrdq. This suggests through

self-consistency, that at T = 0 the electron gas itself is unstable with respect

to the formation of a varying electron-charge or electron-spin distribution with

period � = �=kf [24].

Overhauser [25] discussed the one dimensional Hubbard model and

showed that the 1D metal transforms into an insulator due to electron-electron

interactions forming a spin-density wave. Although BaBiO3 does not have

a spin-density wave, Varma suggested that a negative U arising from intra-

atomic interaction could exist in BBO. It is responsible for the valence-skipping

of the Bi4+ and thus, accounts for a charge density wave [26]. This idea was

checked by Vielsack and Weber [27], performing constrained density functional

calculations in order to extract U values for BBO. Their results provide no ev-

idence for a negative Hubbard U of purely electronic origin and are supported

by the LDA calculations of Meregalli and Savrasov [28].

The other candidate, resulting in a charge density wave ground state,

without the detour of a negative Hubbard U , is the coupling of the electrons

to the underlying lattice. This was �rst demonstrated by Peierls [29]. The
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electron-phonon interaction splits the energy bands at the Fermi-energy and

transforms the metal into an insulator, while freezing in the phonon with

q = 2kF . This phonon mode is occupied macroscopically and causes a static

distortion of the lattice.

In both cases, electron-electron or electron-phonon interaction, the per-

fect nesting property of the Fermi-surface is a prerequisite for the phase tran-

sition. The periodicity of the CDW is not necessarily pinned to lattice peri-

odicity but is determined by the nesting vector at Fermi-energy. These nest-

ing properties, on the other hand, are harder to obtain in multi-dimensional

systems. Nearest-neighbor tight binding models [13] give perfect nesting at

the Fermi energy in BaBiO3 and more realistic models partially preserve this

property. However, for the doped material the nesting degeneracy is lifted and

metallic behavior is predicted. The simpli�ed RS-model describes the charge-

density wave in the half-�lled case driven by nesting on a 3D Peierls scenario.

It can also serve as a model for the insulating behavior under light doping

(Chapter 4).

It will be important to understand the two parts of the Hamiltonian

and their interplay in more depth. We therefore start in this chapter with

analyzing the non-interacting HamiltonianHt and the interaction partHe�ph+

Hph separately, before we review the analytical solution [20] for the Rice-

Sneddon model in the half-�lled case. In the numerical section, the interplay

between Ht and He�ph will be investigated further. Di�erent pictures of the

ground-state emerge, depending on the coupling strength �. The chapter

closes with a section on experimental results in BaBiO3 and an estimate for �

in based on experiment and theory.

19



3.2 The extremes: g ! 0 and t! 0

3.2.1 Delocalized electron states: g = 0

Neglecting the electron-phonon term (g = 0), the band-structure is modeled

by the hopping term, describing metallic behavior of the system and yielding

a simple cosine dispersion:

�~k = �2t(cos(kxa) + cos(kya) + cos(kza)): (3.1)

The band minimum is at ~k = 0 and the bands are symmetric around �~k = 0,

which is the Fermi energy at half-�lling. The dispersion has the symmetry

property �~k+ ~Q
= ��~k, where ~Q = (�=a; �=a; �=a). This leads to perfect nest-

ing, when the Fermi energy is zero, because for each ~k with �~k = 0, there exists

another state corresponding to ~k + ~Q, which is also at the Fermi energy.

The charge-density is distributed homogeneously over the entire crystal and

the wave-functions are delocalized, i.e. the electrons are described as Bloch-

waves with wave-vector ~k and their e�ective mass given by mij
e� = ( 1

�h2
d2�~k
dkidkj

)�1,

which we de�ne to be m�
ij. The energy per atom of the system at half-�lling

is given by:

Etot=N =

Z
occ

d3kD(k)�k = �2t (3.2)

3.2.2 Localized electron states: t = 0

In the opposite limit, the RS-model describes insulating behavior at half-�lling.

The ground state consists of symmetric breathing type distortions of amplitude

e around the Bi sites and the Bi-lattice splits into an A and B-site type.

Electrons on A sites have their energy lowered by �ge = �6gu and electrons
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on B sites their energy raised by ge = 6gu. The ground state at half-�lling

consists of electron pairs localized on A sites and empty B-sites, i.e. the charge

is completely disproportionated (see Fig.2.1). The distortion amplitude u is

controlled by the elastic energy term. To �nd the optimal distortion amplitude

u0, the system energy Etot = N(�6gu + 3=2Ku2) has to be minimized with

respect to u, leading to

u0 =
2g

K
: (3.3)

Thus, the energy density of the system, is given by:

Etot=N = �12g
2

K
+ 6

g2

K
= �6g

2

K
(3.4)

In this limit also on-site electron-electron interaction can be added without

creating too much complication. The e�ect of the electron-phonon term can

be replaced by an e�ective negative Hubbard U . The oxygen-ion polarization

overscreens the on-site Coulomb repulsion.

3.3 Analytical studies of the CDW instability

for a half-�lled band

For half-�lling, the electron dispersion shows strong nesting at the Fermi en-

ergy with nesting vector ~Q = �
a
(1; 1; 1) (see Sec.(3.2.1)). Thus, for arbitrarily

weak electron-phonon coupling, the homogeneous charge distribution is unsta-

ble with respect to the formation of a commensurate charge-density wave with

wave-vector ~Q. The system is unstable against static breathing-mode type

distortion of the oxygens. Oxygens are displaced by u(l; �) = � e0
6
outward
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(+), away from half of the Bi atoms, and inward (�), toward the other half.

The dilatation alternates from cell to cell.

The ground-state of the system is therefore, characterized by an ordered

oxygen-displacement wave (ODW) with wave-vector ~Q and an order parameter

de�ned as:

u(l; �) = u0 exp(i ~Q~Rl) = �u0 (3.5)

or

e(l) = e0 exp(i ~Q~Rl) = �e0; (3.6)

plus a charge density wave (CDW) with same wave-vector ~Q and amplitude

�0:

�(l) = hcyl cli = 1 + �0 exp(i ~Q~Rl) = 1� �0: (3.7)

Thus, the unit cell of the original lattice is doubled and two distinct sublat-

tices A and B form a rocksalt lattice, changing the translational symmetry

to fcc-symmetry. Sites on the A sublattice are de�ned to have positive e(l)

and the orbitals jl > have their energy lowered. The B sublattice is de�ned

correspondingly.

To see the opening of the gap in the energy spectrum, we �rst derive the

new dispersion relation, inserting (3.5) and (3.6) in H. Then, the amplitude

e0 = 6u0 and the excess charge �0 have to be determined self consistently.

3.3.1 Opening of the Peierls gap

A convenient basis to work in are the Bloch functions [20]:

j~kAi = 1p
(N=2)

AsublatticeX
l

ei
~k�~Rljli (3.8)
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and the corresponding functions for the B sublattice.

In this basis set the Hamiltonian separates into 2x2 blocks:

Hred = (
-� �~k

�~k �
) (3.9)

with

� = ge0 = t
p
�e0 (3.10)

and �~k the eigenvalues of the undistorted problem.

Now the problem can be solved in the standard way. The energy eigenvalues

are:

E~k = �
q
�2~k +�2: (3.11)

De�ning an angle 2�~k by

tan(2�~k) =
�~k
�
; (3.12)

the corresponding eigenvectors for positive and negative E~k
read:

j~k�i = cos(�~k)j~kAi+ sin(�~k)j~kBi (3.13)

j~k+i = sin(�~k)j~kAi � cos(�~k)j~kBi: (3.14)

The distortion of the oxygens splits the 6s band into two Peierls bands ~k+ and

~k�. These bands are separated by a minimal energy of 2�. All states j~k�i
in the lower Peierls band are occupied twice due to spin degeneracy, leaving

the upper band empty and thus, account for the insulating behavior of the

23



system. The many body wave-function for the ground state in the half-�lled

case, therefore reads:

jG >=
Y
~k;�

cy~k�jvac > : (3.15)

The density of states D(E) can be evaluated in terms of the density D0 of

undistorted problem using D(E)dE = D0(�)d� and Eq. (3.11):

D(E) = D0(
p
E2 ��2)

jEjp
E2 ��2

�(jEj ��) (3.16)

D(E) has an inverse square root singularity at the band edge and is shown in

Fig.3.1.

Further analysis of the dispersion and the eigenvectors shows, that

mainly the states at the top of the valence band are responsible for the charge

separation. The splitting of the original lattice in A and B sublattice doubles

the unit cell and therefore reduces the Brillouin zone. In the reduced part

of the Brillouin zone (RBZ), the eigenvalues �~k and thus, �~k are negative for

nearly all ~k. Therefore, the lower Peierls band is mainly built from states

which are bonding, i.e. in phase between A and B sites. On the other hand,

for states at the band edge (�~k = 0 ! tan(2�~k) = 0) the amplitude vanishes

on B sites for valence band states and on A sites for conduction band states.

This means, mainly the states at the top of the valence band, which are also

highest in density, are responsible for the charge disproportion.

From the new dispersion relation Eq. (3.11), we see furthermore, that

the e�ective mass of the electrons gets enhanced with respect to the non-

interacting mass m�
ij. For strong coupling the leading term in the e�ective

mass is proportional to the ratio of the gap � to the non-interacting band
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Figure 3.1: Density of states for � = 0:3, evaluated with a tetrahedron code
[30][31] (line) together with a histogram obtained by diagonalizing H for a
super-cell with 1020 Bi atoms

energy �~k:

mij
e� �

�

�~k
m�

ij (3.17)

3.3.2 Self-consistent determination of the ODW- and

CDW-amplitudes

Gap and ODW-amplitude

In order to determine the optimum distortion amplitude u0 or � = 6t
p
�u0

respectively, one has to minimize the total energy of the system, which is given
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by the sum E~k over all occupied states Ee plus the elastic energy EL:

Etot = Ee + EL = �2
RBZX
~k

q
�(u0)2 + �2~k +

3NKu20
2

(3.18)

Minimizing this with respect to u0 yields an equation for the gap, which reads

after inserting the expression Eq. (2.10) for the dimensionless coupling con-

stant :

1

12�
=

2

N

RBZX
k

1p
(�~k=t)

2 + (�=t)2
(3.19)

The gap-equation Eq. (3.19) can be approximated for weak and strong cou-

pling. For small � one obtains the familiar BCS exponential law [20]:

�

t
= C1 exp(�1=C2�) for � << 1 (3.20)

with C1 = 6:5 and C2 = 3:44.

For strong coupling the gap behaves almost linear in � [20]:

�

t
= 12�(1� 1

48�2
) (3.21)

and approaches asymptotically the value obtained for t = 0:

� = 12
g2

K
! �

t
= 12�: (3.22)

The amplitude of the ODW u0 is directly related to � by � = 6gu0.

CDW-amplitude

What is left is to �nd an expression for the amplitude �0 of the CDW.

Making use of the inverse relation of (3.13) and (3.14):

j~kAi = sin(�~k)j~k+i+ cos(�~k)j~k�i (3.23)
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and the fact that for the half �lled case the upper band is empty, the expec-

tation value hcyl cli determining �0 can be evaluated the following way:

�A = 1 + �0 = 2hcyl cliA =
4

N

RBZX
~k

hcy~kAc~kAi =
4

N

RBZX
~k

cos2(�~k) (3.24)

Taking the value cos �~k from (3.12) and using the gap-equation (3.19) one

�nally arrives at:

�0 =
�=t

12�
: (3.25)

3.3.3 Artifacts of the model

Some results are special properties of the simpli�ed Rice-Sneddon Hamiltonian.

The perfect nesting property at the Fermi energy at half �lling is destroyed

by adding further range hopping. Thus, the charge-density wave instability is

inhibited. Nevertheless, a charge-ordered state is still the ground state, when

the electron-lattice coupling exceeds a critical value. The perfect nesting prop-

erty, therefore, is not required for a charge separated ground state and we will

introduce in the next chapter the concept of a "bipolaronic crystal", to clarify

this point.

Adding a not too large Hubbard U to the Hamiltonian also inhibits the insu-

lating behavior and a threshold distortion exists before the lower and upper

Peierls band get separated by a gap [19]. Since the electron-phonon term is

the source of a negative, i.e. attractive U , it is clear, that the coupling has to

exceed a certain strength to overscreen the repelling electronic contribution to

U .
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3.4 Numerical results

3.4.1 Notes on the numerical calculations

Most of the numerical studies were done with an asymmetric supercell con-

taining 210 Bi atoms. This size is suÆcient regarding �nite size errors for

� > 0:3. For smaller � the size has to be steadily increased as � decreases.

For � < 0:1 exact diagonalization results require supercells containing more

than 1000 atoms and a general tendency to underestimate the gap compared

to the results obtained with the tetrahedron code is observed. The starting

conditions for the oxygen-distortion vector ~u were varied. In general, the pro-

gram could �nd the minimum easily, when the ODW-behavior was initialized

with arbitrary amplitude.

3.4.2 Hopping versus electron-phonon-term: competi-

tion and compromise in the half-�lled case

The analysis of the separate contributions to the Hamiltonian at half �lling

in Sec.(3.2) showed that hopping and the electron-phonon term have opposite

preferences in terms of localization of the charge density. It is therefore natural

to expect some competition of the two terms, when they act simultaneously in

a system. On the other hand, it is a quantum mechanical rule, that starting o�

with one term in the Hamiltonian, adding a second one will lower the energy

of the system. Therefore, hopping and electron-phonon terms will try to �nd

a compromise. The particular compromise will certainly depend on which of

the two terms is dominant in terms of lowering the total energy.
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Charge-density wave concept for weak electron-phonon coupling

If hopping is the dominant process, the electron-phonon term can be treated

perturbatively. In this case the behavior of the system is determined by the

band-structure and the particular topology at the Fermi surface. If there is no

nesting at the Fermi-energy, the e�ect of weak electron-phonon coupling results

in a mass renormalization of the band mass but the metallic property will be

preserved. On the other hand, perfect nesting at the Fermi energy causes an

instability of the metallic state against in�nitesimal perturbations with period-

icity of the nesting vector. The electron-phonon term creates a charge-density

and static lattice displacement wave, opening a gap at the Fermi-energy, and

transforms the metal into an insulator. Thus, the e�ect of the electron-phonon

term is tremendous in this case as it causes a phase transition of the material.

However, the e�ect in the energy is small and can be handled perturbatively

once the symmetry breaking is treated self-consistently. Signature of this state,

is a weak spatial oscillation of the charge density increasing exponentially with

�1=�. The hopping term still dominates the total energy and e�ective mass

of the band electrons.

Bipolaronic crystal concept for strong electron-phonon coupling

Contrary to the CDW-formation, the charge-ordered ground state is more

or less independent of the particular topology of the Fermi-surface, if the

electron-phonon term is strong enough. Electrons pair on Bi3+ sites and cause

a strong response of the oxygens forming Bi5+O6 molecules. In this case, it

is more appropriate, to characterize the ground-state as a bipolaronic crystal

and reserve the term \charge density wave" for a charge-ordered state caused
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by a nesting instability of the electron system. Electrons or holes have strong

localization properties caused by the strong lattice response on Bi3+ and Bi5+

sites, respectively. The term bipolaron will be explained in more detail in the

next chapter.

Now hopping acts perturbatively and electrons are allowed to delocal-

ize. As a result, the ideal charge disproportion in Bi3+ and Bi5+ will become

incomplete and the wave-function become Bloch-waves. However, the e�ective

mass is dominated by � and can be multiples of the band mass. Thus, since

coherent band motion of \heavy" charge carriers can be destroyed more easily,

the localized aspects of the electrons become more important.

Competition and compromise

The competition of the two terms is probably most clearly re
ected in the

development of the system energy with �. In Fig.(3.2) the total energy per

atom Etot = Ee+EL and its contributions the electronic part Ee and the elastic

energy contribution EL are displayed separately. If hopping dominates, we

expect a weak charge disproportion. If the electron-phonon term is dominant,

an almost complete charge disproportion is anticipated. The opposite nature

of the two terms yields a rather quick transition from one to the other.

The electronic part of the energy per atom Ee shows indeed a sharp

crossover from the pure hopping limit Eg=0
e = �2t to the pure electron-phonon

interaction limit Et=0
e = �12g2

K
. The crossover occurs between 0:1 < � < 0:3,

where �c1 = 1
6
� 0:167 marks the coupling strength, when Et=0

e = Eg=0
e

and the deviation from either limit is biggest. EL has a kink, too in this

interval and also the excess charge �0 increases rapidly, there (see Fig.3.3).

However, the excess charge still di�ers from 1 for � > 0:3 and approaches
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Figure 3.2: �-dependence of the system energy per atom Etot, EL and Ee,
arrows indicate �c1 and �c2

the complete charge separated state rather slowly. This is the e�ect of the

hopping term. The incomplete charge disproportion is the way of compromis-

ing hopping and electron-phonon term and leads to a smaller u0 or gap 2�

(see Eq.(3.10),(3.25)). In turn, the elastic energy costs EL are reduced and

converge rather slowly against the t = 0 limit. As a result, the total energy

Etot is lowered and approaches the asymptotic value very slowly. The develop-

ment of Etot is rather smooth and exhibits no clear kink, contrary to EL and

Ee. This is because the changes in EL and Ee partly compensate each other.

The states accounting for the incomplete charge-dispropotion are those at the
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Figure 3.3: �-dependence of � and the CDW-amplitude �0

bottom of the lower Peierls band, which pro�t most from hopping and thus

have delocalized character. As stated previously, towards the top of the band

states localize increasingly more easily.

Since Etot is the physically relevant number, a second critical cou-

pling constant �c2 can be assigned. For �c2 =
1
3
the energy of pure hopping

Etot = �2t and pure interaction Etot = �6g2
K

(see Sec.3.2.1 and Sec.3.2.2) are

equal and the di�erence of the actual energy and the the two limits t = 0 and

g = 0 is biggest. Thus, �c2 denotes the coupling strength, where the transi-

tion between hopping as dominant and electron-phonon as dominant process

should de�nitely occur. Based on the results for Ee and EL, it seems rea-

sonable to suppose that the transition starts earlier and the most signi�cant
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changes in the system happen in the range between 0.1 and �c2. This is further

supported by the behavior of the gap. The weak coupling formula Eq.(3.20)

agrees nicely with the numerical values for � � 0:2 and the strong coupling

formula Eq.(3.21) starts to work reasonably well for � � �c2 (relative devia-

tion at � = 0:325 is 5% and at � = 0:9 only 0:1%).

Conclusion

The simpli�ed RS-model exhibits a charge-ordered ground state at half �lling.

For small �, hopping is the dominant factor and nesting properties at the

Fermi energy are decisive to transform the metal into an insulator. The charge

ordered state can be described in terms of a commensurate charge density

wave. For strong coupling the electron-phonon term dominates and the idea

of a bipolaronic crystal or local-CDW describes the behavior of the system

more accurately. Details of the band structure are less important in this limit.

The transition between the two extremes occurs in the range between 0:1 <

� < 0:33.

3.5 Experiment and theory

3.5.1 Experimental results

The conclusion that BaBiO3 exhibits a charge-ordered ground-state, comes

from structural investigations. Neutron di�raction experiments identify su-

perlattice peaks, that indicate symmetric breathing-type oxygen distortions

besides tilting distortions [6] ,[32]-[35] . The Bi-O bond lengths have been
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re�ned to be e.g. in Ref. [35] Bi(1)-O = 2:11�A, Bi(2)-0 = 2:29�A, which cor-

responds to u0 = 0:09�A. This smaller than what is expected from a complete

charge disproportion (Shannon radii: Bi-O3+ = 2:11 �A, Bi-O5+ = 2:38�A). The

e�ective valences for the Bi atoms have been assigned according to Rietveld

re�nements varying between +3:9 to +3:5 and +4 to +4:4 [34]. Also photoe-

mission experiments �nd a weak feature that might indicate di�erent Bi-types

(but could also be explained in other ways) [36]-[38].

Various optical experiments measure an optical gap of about 2eV, that can be

associated with excitations across the Peierls gap 2� [39]-[41].

3.5.2 Determination of � and comparison between

theory and experiment

The simpli�ed RS-model relates the gap 2� to the value of the static oxygen

displacement u0 and to �0. To compare experiment with the theory, the pa-

rameters t, K and g have to be determined.

The e�ective hopping integral t between the Bi sites is chosen, that the band-

width of the valence-band W � 4:1eV , coming from band-structure calcula-

tions for the cubic phase [42] [28], agrees with the width of the cosine dispersion

band W = 12t. This yields t = 0:34eV .

From the optical data, we take 2� = 2eV and obtain, together with the esti-

mate for t = 0:34 eV, the value for �
t
� 3.

Therefore, � can be extracted from Fig:(3.3) to be:

� � 0:3: (3.26)

!0 is determined by Raman experiments, where a breathing mode with energy

570cm�1 (70meV) is identi�ed [43]. Together with the oxygen mass M = 16u
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this yields a elastic constant K = 19eV/�A2. Finally g is calculated from

� = g2

Kt
, giving g = 1:4eV/�A.

Parameter Value

t 0.34eV

K 19 eV/�A2

g 1.4 eV/�A

� 0.3

With these values u0 is predicted to be u0 = �
6g

= 0:12�A, which compares

to the experimental value of 0:09�A. The theoretical value �0 � 0:8 is also

overestimated by the RS-model. It should be mentioned, that the re�ned �

value 0:3 lies in the transition area between a hopping and electron-phonon

dominated system, where �0 and u0 are very sensitive to small changes in

�. However, � = 0:3 lies closer to the limit of a clearly phonon-dominated

system. The spatial dimension of the electron-electron pairs can be estimated

by � = �hvF
��

[24]. Tajima [44] estimated � = 3�A for BaBiO3. This is less

than the spacing between two adjacent Bi-atoms and supports a more local

view of the system in terms of the bipolaronic crystal picture. A weak quasi

one-dimensional CDW-system is K0:3MoO3. Here � is only 0:07 eV and � is

estimated to be � = 29�A [24]. We expect therefore that the physics in BaBiO3

can be understood starting from the bipolaronic crystal limit.
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Chapter 4

Light doping of the

charge-ordered state: polaron

and bipolaron formation

4.1 Introduction

4.1.1 Theories for the MI-transition under doping

The real theoretical challenge, when studying the normal state properties of

the BBO system, is the metal to insulator transition under doping. In the

Ba1�xKxBiO3 alloys the semi-conducting properties persist up to an unusual

high doping concentration of x = 0:35, when hole-doped with Pb up to x =

0:65. Since the Pb atoms replace the Bi atoms, doping the band-�lling also

and nature of the conduction band. Potassium on the other hand replaces the

passive Ba-atoms and has a negligible e�ect on the Bi-O bands [13]. Thus,

intrinsic e�ects associated with band-�lling can be studied in the K-doped
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compounds.

If Coulomb interaction between the charge carriers is again omitted,

there are still various schemes, that could explain the persistence of insulating

behavior in the presence of dopants. Starting from the picture of a weak-

coupling commensurate CDW-formation on a Peierls-nesting scenario for the

undoped system, the formation of incommensurate charge density waves in the

doped materials has been proposed. As already mentioned, suÆcient nesting

that causes a charge instability away from half-�lling are harder to obtain in

three dimensional systems than in 1D. However, the process could be assisted

by chemical ordering of the dopants in the supercell, i.e. the K ions adopt

helpful positions to maintain the CDW [45] [46].

More recent, phase separation or stripe formation has been suggested,

to explain the insulating behavior. The doped holes collect in hole rich regions

and spatially separate from undoped insulating phases. The doped regions may

or may not become metallic. This process could also be assisted by chemical

ordering waves of the counter ions.

Another route to the MI transition follows the idea of strong electron-

lattice interaction. One could expect some mechanism that immobilizes the

charge carriers due to electron-phonon interaction. This process is commonly

known under the term \self-trapped or small polaron formation". Yu et al.

studied a 2D-Rice-Sneddon model along these lines for a large dopant concen-

tration [21]. For the lightly doped material a variational calculation has been

performed by Allen and Kostur [20] in order to estimate the critical coupling

constant that permits such a scenario to happen.

In this chapter, we perform detailed numerical calculation for the dilute doped
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material on the stability and nature of polarons and bipolarons with respect

to the coupling constant �. We �rst introduce the general concept of \self-

trapped polarons" and review some results of similar studies for the empty

band Rice-Sneddon model [47]. The numerical section studies the stability of

(bi)polaron formation and several many-body and single particle properties of

the solutions. In the last section, we compare the results to the empty band

case and give a brief overview over related experiments.

4.1.2 General introduction to polaron theory

The quasi-particle composed of an electron or hole and the pattern of lattice

displacement is called a polaron. The idea was �rst introduced by Landau as

an attempt to explain the optical properties of alkali halides by the notion of

exciting self-trapped carriers, i.e. exciting otherwise free carriers which become

trapped or bound within potential wells produced by the displacement of atoms

from their carrier-free equilibrium positions [48].

The discussion of polaron formation has ever since been performed

along two lines, depending on whether long or short range interaction with

phonons was studied. A continuum model for long range interaction with op-

tical phonons was proposed by Fr�ohlich: it studies the charge carrier's energy

dependence on the positions of the solid's ions through Coulomb interaction

[49]. In this model, the electronic energy is lowered for arbitrarily weak values

of the coupling constant � between electrons and phonons. These bound states

are denoted as \large" polarons as lattice deformations extend over several unit

cells, with their spatial extent continuously shrinking with increasing coupling

strength. Self-trapping, in the sense of a strongly immobilized charge carrier,
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in this model, however, requires unrealistic big coupling constants and for any

reasonable value of � the carrier remains delocalized, with atoms responding

dynamically rather than statically to the electronic motion. Thus, for weak

and intermediate coupling the situation can be described by an almost free

charge carrier, dressed with phonons increasing its e�ective mass. A large po-

laron generally moves coherently. The e�ective mass is gradually increasing

with � and the weak and intermediate coupling mass renormalization results

are given by [50]:

m�

m
= 1 +

�

6
: (4.1)

This model has to be contrasted to models studying situations in which

the charge carrier is subject to a short range potential mediated either by

acoustic phonons [53] or optical phonons [54]. They exhibit the formation

of so called small polarons, that self-trap. For dimensions d > 2, the cou-

pling strength has to overcome a critical value until these bound states occur.

The small polaron is con�ned to the close neighborhood of one unit cell with

displacements being a substantial fraction of the lattice constant. Its e�ective

mass changes discontinuously at critical coupling constant and the band width

becomes extremely small. The coherent motion of small polarons occurs as

the self-trapped carriers follow the atoms as they tunnel from the equilibrium

positions associated with the carrier occupancy of one site to those associated

with carrier occupation of the other site [54]. Since the band-width is so small,

the coherent motion can be readily destroyed by impurities, trapping the car-

rier on one ion. Thus, self-trapped small polarons move primarily incoherently

through thermally assisted hopping [51] [52].

The mechanism of self-trapping has been extensively discussed by Toyozawa,
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Rashba and others [53][55][56]. They studied a single charge carrier in a de-

formation type potential in adiabatic approximation:

H =
X
<i;j>

tijcic
y
j � g

X
i

Qicic
y
i +

K

2
Q2
i (4.2)

where the Qi are atomic positions in con�guration space.

Self-trapping is understood as a strong competition between the two processes

of localization and delocalization of the charge carrier. In the presence of

transfer and absence of lattice distortion the electron moves freely and the

maximum energy released when the electron is allowed to extend throughout

the crystal is half the bandwidth W=2 = �t where � is the number of next

neighbors. On the other hand, neglecting hopping, the energy released by

localizing the electron on one site is given by the lattice relaxation energy

ELR = g2

2K
.

Thus, the criterion for self-trapping reads:

ELR > W=2 (4.3)

Below the critical coupling constant the self-trapped state still is metastable

within in a certain range. The free state, however, is always either a stable or

metastable state.

4.1.3 The RS-model: self-trapping in the empty band

case

The electron-phonon term in the Rice-Sneddon-model is a short-range inter-

action term and thus, the Toyozawa model and the RS-model are similar. In

fact, a study on polarons in the empty band case in a RS model revealed es-

sentially the same behavior for inserted electrons in the empty band as the
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Toyozawa model [47].

Below a critical coupling constant of � = 1:96, where � is de�ned according to

Eq.(2.10), the system is stable against lattice distortions and the wave function

remains delocalized. Non-adiabatic coupling with virtual phonons leads to a

self energy shift of � 0:09�t and suggests a comparison to the large Fr�ohlich

polaron. A unique translation between this two pictures, however, cannot be

given [47].

Above �c a small self-trapped polaron with an initial localization of 90 % of

the electron density on one ion is formed, the typical distortions are u � 0:03a

and decay exponentially far from the center of the polaron. A gap �p opens

in the electron spectrum- separating the lower lying localized state from the

delocalized band states. Besides, a region of metastability for small polarons

is found numerically and con�rmed by variational calculations [47].

A comparison with the Toyozawa model shows that �c can be estimated from

the localization-delocalization criterion. The optimal distortion for an electron

localized on one ion when hopping is neglected, is given by u = g

k
, leading to

a lattice relaxation energy of ELR = 3g
2

K
. This has to be compared to the half

band-width W=2 = 6t.

Thus:

3
g2

K
> 6t! � =

g2

Kt
> 2: (4.4)

Therefore, the process of self-trapping in the empty band case in the Rice-

Sneddon model can to a good degree be understood in the terms of the Toy-

ozawa treatment. The idea of competition between localizing and delocaliza-

tion terms in the Rice-Sneddon model was already introduced in the previous

chapter, when analyzing the nature of the charge ordered state. However, due
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to the presence of not just one but many electrons in the system, the ability to

compromise the two terms is enhanced. This will be also re
ected in the case

of polaron formation on the background of a charge-ordered ground-state.

4.2 The idea of self-trapping on the background

of the charge-ordered state

Self-trapping of charge carriers is a process that requires a strong lattice re-

sponse and domination of localizing terms over delocalizing terms. Therefore,

a �rst reasonable step to analyze self-trapping in the charge ordered state is

to completely ignore the hopping term, i.e. t = 0 .

4.2.1 Polaron formation in the t = 0 case

Removing one electron from an A site, and keeping the Peierls distortion

�xed, costs the amount of the attractive on-site energy � = 6gu0 = 12g
2

K
and

transforms a Bi3+ nominally into a Bi4+. However, the inserted hole reduces

by one the charge di�erence between the site where the hole is localized and

its six next neighbor Bi5+-sites. Thus, the six oxygens surrounding the Bi4+,

experience a smaller repulsive force, and consequently relax partially to their

new equilibrium positions:

u0 =
2g

k
�! u1 =

u0
2

=
g

k
: (4.5)

This relaxation has a twofold e�ect. On the one hand, it reduces the elastic

energy costs by:

�EL = 6
K

2
(u21 � u20) = �9g

2

K
: (4.6)
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On the other hand, the relaxation changes the amount of attractive on-site

energy on the Bi4+ site from �6gu0 = �12g2
K

to �6gu1 = �6g2
K

and pushes

the energy of the half-occupied Bi4+ state into the gap. The di�erence in

Ee between the ground state (two electrons occupying the state with energy

�6gu0) and the self-trapped state ( one electron missing and the remaining

electron occupying the gap state) is given by:

�Ee = �6gu1 � 2 � (�6gu0)) = 18
g2

K
: (4.7)

Thus, the creation of a self-trapped polaron costs energy Ep:

Ep = �Ee +�EL = 9
g2

K
: (4.8)

Compared to the energy costs of inserting the hole without lattice relaxation,

the self-trapped polaron is bound by the polaron binding energy Bp:

Bp = �� Ep = 3
g2

K
: (4.9)

4.2.2 Bipolaron formation in the t = 0 case

Besides polarons, in order to develop a realistic model for light doping, one

has to consider the possibility that the oxygen deformation overscreens the

Coulomb repulsion between two holes and thus attract a second hole onto the

same site. In other words, one has to take the possibility of bipolaron forma-

tion into account.

A bipolaron in the t = 0 limit corresponds to the removal of two electrons

from one site and a conversion of a Bi3+ into a Bi5+. Thus, there is no charge

di�erence between the Bi5+ site and its next neighbors and therefore the sur-

rounding oxygens relax completely, releasing elastic energy �EL:

�EL = �6K
2
u20 = �12g

2

K
: (4.10)
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Therefore, the creation of a bipolaron costs energy:

Eb = �Ee +�EL = 2�� 12
g2

K
= 12

g2

K
: (4.11)

��EL is the net energy gain obtained by the lattice relaxation or the lattice

relaxation energy �b = 12g
2

K
. In order to obtain the binding energy Bb of

the bipolaron, this energy has to be compared to the binding energy of two

separated, non-interacting polarons:

Bb = �b � 2Bp = 6
g2

K
: (4.12)

4.2.3 The e�ect of hopping t 6= 0

Including the hopping term makes the problem interesting and more compli-

cated. The vacuum of this problem is the half-�lled ground-state. Including

hopping we therefore change the vacuum according to the previous chapter, i.e.

the oxygen distortion u0 and the gap do not follow the simple �-dependence

anymore.

Moreover, the inserted hole has now two competing possibilities. It can

either self-localize as described in the previous subsections, or it can delocalize.

The optimal delocalized states for the hole are the states at the top of the lower

Peierls band, which have energy ��. These states, however, have vanishing

amplitude on B sites (see Sect.3.3.1), which means, that the hole will not

spread out homogeneously over the entire crystal but reduce the average charge

di�erence between A and B sites. This will in turn lead to a response of the

oxygen atoms and therefore renormalize the gap 2�. In principle one could

imagine that these self-consistent changes could lead to the formation of an

incommensurate charge density wave. Under moderate doping the periodic
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lattice should "pin" the periodicity of the Peierls distortion and doping will

primarily lead to a weakening of the charge density wave and reduction of the

gap.

Also, contrary to self-trapping in either the empty band or t = 0 case,

the oxygen response to the localization process will in
uence the other band

electrons, which cause again the oxygens to move.

All these changes have to treated self-consistently and a simple pertur-

bative approach is usually not working. We have not found a better treatment

than numerical studies of �nite systems.

4.3 Numerical results

4.3.1 Notes on the numerical calculations

For the numerical studies of polaron and bipolaron formation the algorithm

described in Sec.(2.2) was used. The oxygen positions were varied until the

total energy was minimized under the condition that the lowest N=2 � 1 en-

ergy levels were �lled and the next highest was occupied singly (polaron) or

left empty (bipolaron). The positions for the oxygens were usually initialized

according to the Peierls order parameter. For weak coupling, the initializing

was changed to the distortion pattern obtained for a self-trapped solution in

a previous run, with a bigger coupling constant.

A cluster size of about 200-400 atoms was suÆcient to obtain reliable

values for the energy di�erences between the ground-state and the trapped-

states. The size was increased up to 1000 atoms. For weak coupling, we took

the gap values obtained by integrating the gap equation with a tetrahedron
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code, to calculate the trapping energy, instead of identifying the gap with the

numerical eigenvalue.

4.3.2 Stability of self-trapped states

Stability criterion

The self-trapped states compete against delocalized states and one expects a

critical coupling constant �c, when localized states become unstable. There

are two possibilities how the transition between localized and delocalized states

could occur with �. On the one hand, they could be separated by a potential

barrier, like in the empty band case [47]. In this case a range of metastablility

is expected. On the other hand, they could evolve continuously, similar to a

second order phase transition.

The aim of this section, is to study the transition numerically and quan-

tify �c for the insertion of one (two) hole(s) into the crystal. The delocalized

state with the lowest energy is obtained, when the hole occupies a state at the

top of the lower Peierls band with energy �. Since the force on the oxygens

for delocalized holes is a n=N -e�ect, where n is the number of holes and N the

number of Bi atoms, the e�ect of oxygen-relaxation can be neglected for one

hole. The relative stability between delocalized and localized state is therefore

evaluated with respect to �.

De�nitions

Although the terms, formation energy E, relaxation energy � and binding

energy B, were already used in Sec.(4.2) we want to put them on a more

formal basis according to the stability criterion.
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The minimum energy required to insert a hole is denoted as polaron

formation energy Ep. Ep can be expressed as the di�erence of the minimum

energy required to insert a hole � without allowing lattice relaxation and the

net e�ect of lattice relaxation given by �p:

Ep = �� �p: (4.13)

�p is called lattice relaxation energy and is de�ned as the energy di�erence

between the polaron state and the minimum energy of an added hole if no

oxygen-displacements are permitted:

�p = h	fugjHj	fugi � [hVfu0gjHjVfu0gi+�] (4.14)

where jVfu0gi =
Q

k;� c
y
k�
jvaci is the many-body wave function of the new

vacuum state, the half �lled band with optimum ordered displacements u0,

and j	fugi has an extra hole present and its displacements reoptimized. The

bipolaron formation energy Eb = 2� � �b and �b are de�ned analogously.

Therefore, the binding energy Bp equals the relaxation energy in the polaron

case:

Bp = �p: (4.15)

No Coulomb repulsion between the holes is included in our model. Thus, the

bipolaron binding energy Bb is given by the di�erence of �b and the binding

energy of two separated, non interacting polarons 2�p.

Bb = 2�p � �b: (4.16)

Polaron formation

Localized bound polaron states were obtained numerically for �pc > 0:18. Be-

low the critical coupling constant only delocalized states were found. Close to
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the critical coupling constant, the polaron binding energy is very small and

one can speculate, that it might be a metastable state compared to a delocal-

ized state. No range of metastability is found numerically. The delocalized

numerical solutions at �pc , were comparable in energy, but unstable with re-

spect to small distortions toward a polaron state. Our results are compatible

with a continuous evolution of the polaron state similar to a second order tran-

sition with �. This contrasts with the empty band case, where a �rst-order

instability was found [47].

The �-dependence of the lattice relaxation energy for the polaron in

the physically interesting range between 0 < � < 1 is shown in Fig.(4.1). �p

approaches asymptotically the t = 0 limit �p = 3�t, but the deviations are

considerable in this range. The problems related to �nd easy perturbative

formulas were already mentioned in Sec.(4.2.3). The vacuum changes with t

and screening e�ects of other band electrons have to be taken into account

self-consistently. Phenomenologically a better \�t" to �p can be obtained by

approximating �p, according to:

�p=t � �(�)� 9�! 3�� 1

4�
: (4.17)

This �t is based on the observation that in the equation �p = � � Ep, the

nonlinear contributions to Ep are weaker than to � and corresponds formally

to the introduction of the strong coupling values for u0 into Eq.(4.5)-Eq.(4.9),

i.e. it corresponds to a vacuum correction of the trapping energy.

Let us illustrate the failure of a simple perturbative approach, by analyzing

the nonlinear corrections to Ep. Ep can be decomposed in the changes caused

by the lattice response to the presence of the hole �EL and the changes of the
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Figure 4.1: Polaron lattice relaxation energy �p

electronic energy �Ee compared to corresponding vacuum. In a perturbative

approach deviations in both, the vacuum and the �nal state, have to be taken

into account. In the �nal state the localized hole starts to delocalize. This

will lower the energy �s=t = �6� of the gap state (see Sec.(4.3.3)), which is

occupied with one electron, by a term c=�. Therefore, if we neglect changes

in the states of the other electrons, one predicts that the true �Ee should be

smaller than in the t = 0 limit, since analogously to Sec.(4.2.1):

�Ee=t = 1=t[� + (�s +�)] = 18�� (
1

2
+ c)

1

�
; (4.18)
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where we included the change in the vacuum, using the strong coupling formula

for �. Similarly, one expects an increase of �EL=t compared to the t = 0 limit,

if only the response u1 of the six oxygens surrounding the polaron is taken into

account. If we simply include the vacuum correction and leave u1 = g=K, we

obtain:

�EL=t = 3K=t(u21 � u20) = �9� +
1

2�
� O(1=�3): (4.19)

Certainly u1 deviates from the t = 0 limit, too, when the polaron wave-function

extends to the neighboring sites. To change the sign of the 1=� correction in

Eq.(4.19) this correction would have to exceed 1
2�
.

The numerical results of �Ee and �EL for � < 1 show the opposite

behavior from what is expected from these simple strong coupling arguments.

�Ee is increasing with � and �EL is decreasing. This indicates that the

changes caused by the presence of the other electrons have to be taken into

account self-consistently in the perturbation expansion. The linear behavior

of Ep is due to e�ect that the nonlinear contributions in �Ee and �EL almost

cancel each other, down to � � 0:35.

Bipolaron formation

The numerical onset for bipolaron stability against two delocalized holes was

found to be �bc = 0:15, a little smaller than for the polaron state (�pc = 0:18).

If Coulomb repulsion is neglected, two spatially separated polarons are always

unstable with respect to the creation of a bipolaron state, where both holes

sit on the same site. The bipolaron relaxation energy �b approaches asymp-

totically �b=t �! 12�. For the same reasons as in the polaron case, namely

change of the vacuum with t and screening e�ects of the other band electrons,
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Figure 4.2: Bipolaron lattice relaxation energy �b

no simple perturbative formula can be used to describe the behavior in the

range � < 1. Since in the bipolaron case the gap state is not occupied by

electrons, the released energy for the bipolaron state is given by the reduction

of the elastic energy costs �EL, if changes in �Ee due to the other band elec-

trons are neglected. Therefore, a simple inclusion of a vacuum correction in

Eq.(4.10) leads to :

�b=t = 12�� 1

2�
: (4.20)
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The agreement of this formula with the numerical values is quite good. How-

ever, just introducing a vacuum correction in Eq.(4.10) is not the true story.

The analysis of �EL and �Ee shows once again, that both terms behave op-

posite in the studied �-range to what is expected from simple perturbative

arguments. And again these deviations almost cancel each other and thus ac-

count for the fair agreement between numerics and �t.

Polaron versus bipolaron formation

The bipolaron binding energy Bb is twice as big as Bp in the t = 0 limit. The

reason for the enhanced stability of the bipolaron state lies in the di�erent

electronic spectra. Although at t = 0, two separated polaron gain more lat-

tice relaxation energy back, two mid-gap states are occupied with one electron

each. This state is left empty in the bipolaron case. The neglected Coulomb

repulsion will destabilize the bipolaron and postpone the onset of bipolaron

formation, and thus polarons could be in principle energetically favorable.

With decreasing electron-phonon coupling strength the ratio between the bind-

ing energies Bb

Bp
increases, indicating the relative enhanced stability of the bipo-

laron state compared to the polaron, which is also re
ected in the smaller

coupling strength required for stability.

4.3.3 Analysis: continuous transition from a small to

large polaron

Besides the problem of the vacuum, the diÆculties in obtaining easy formulas

for the binding energies are caused by screening e�ects of the other electrons.
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Figure 4.3: Polaron and bipolaron binding energies normalized to the gap �

Thus, we study both, single particle and many body properties of the self-

trapped states.

A. Many-body properties

To characterize the self-trapped solutions and examine changes with the cou-

pling strength, we analyze the charge distribution by computing and compar-

ing the charge expectation values of the ground- and (bi)polaron state.
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Aa. Charge on the center of the (bi)polaron

Self-trapping implies that the inserted hole charge density gets localized on

a Bi-atom. In the t = 0 limit the hole(s) sit(s) on exactly one site. Fig: 4.4

shows the e�ect of hopping. It displays the � dependence of the maximum

amount of hole charge �center that is localized on the center of the (bi)polaron

positioned at ~r0:

�center =
occX
i

jVj(~r0)j2 �
occX
i

j	i(~r0)j2; (4.21)

where V and 	 denote the single particle states for vacuum- and (bi)polaron

state, respectively and the sum runs over all occupied states.

For the polaron the removed charge density from the central site is

close to one for � > 0:35. In the bipolaron case, the maximum charge density

1+ �0 is removed from an A site, if � exceeds 0.4. For smaller �, the localized

charge density �center decreases rapidly, indicating a more delocalized character

of the solutions. This behavior is hardly surprising, since it basically re
ects

a vacuum state property. In Sec.(3.4.2) two critical coupling constants �c1 =

0:167 and �c2 = 0:33 were assigned to the vacuummarking the transition where

the electronic and the total energy per atom, respectively are dominated by

the electron-phonon term, i.e. the charge localizing term. This assignment

still holds for the lightly doped material and manifests itself in the behavior of

the self-trapped states. Around �c2 �center starts to decrease rapidly, around

�c1 the self-localized hole states �nally become unstable.

The transition occurs rather quickly. The numerical values for �center

at the last stable numerical points set an upper limit of 0.3 for the polaron

and 0.8 for the bipolaron, respectively. These results further support a second

versus a �rst order transition with � into the small (bi)polaron state. The
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Figure 4.4: Charge localized on the center of the (bi)polaron

initial degree of localization at �c is probably close to zero. One is tempted

to compare the transition to the behavior of an electron in a 3D potential

well. At a critical depth of the potential well the electron gets bound and the

wave function changes phase from a real to an imaginary one. Nevertheless,

the probability of �nding the electron within the well is still close to zero. In

any case, the initial degree of localization in the half-�lled band is much less

than in the �rst-order empty band case where 90% of the charge density is

concentrated on one site [47].
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Ab. Induction of excess charge

The question arises how and where the remaining hole charge density is

distributed. A reasonable �rst guess could be on the next neighbor sites.

This, however is only true for very big coupling constants, e.g. � > 2 for

bipolarons.

In the previous chapter we showed how the system balances hopping

and electron-phonon terms in the vacuum-state by an incomplete charge dis-

proportion. How does a compromise look in the present case? The delocalized

hole solutions reduce the gap, i.e. they weaken the charge-density wave, which

could be formally interpreted as the creation of an anti-charge density wave.

This behavior might get re
ected in the (bi)polaron solutions, i.e. the lo-

calized hole could attract electrons on the neighbor sites, which themselves

attract holes and so on. This means, that on some sites the charge of the

(bi)polaron state should be bigger than in the vacuum state.

As a �rst check, we calculate the total amount of excess charge in the

(bi)polaron state �ind given by:

�posind =
X
l

Æ�(rl) (4.22)

where the sum runs over all sites rl with excess charge, i.e. sites satisfying:

Æ�(rl) =
occX
i

j	i(rl)j2 �
occX
j

jVj(rl)j2 > 0: (4.23)

In fact, the insertion of the hole(s) induces a redistribution of negative charge

as seen in Fig: 4.5. The total induced negative charge increases with decreasing

coupling strength and a power-law behavior was found numerically:

�pind / ��2 (4.24)
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�bind / ��4; (4.25)

valid for � > �c2. For weaker coupling the induction e�ect gets further en-

hanced.
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Figure 4.5: Total induced excess charge

Ac. Exponentially damped anti-charge-density waves

What is left is to analyze the spatial redistribution of the charge density

to check the hypothesis of a CDW-character of the (bi)polaron and determine

their size.

Fig: 4.6 clearly demonstrates the CDW character. Positive and negative
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excess charge Æ� alternate with distance r from the center of the (bi)polaron.

The charge decays exponentially with same decay length � for positive and
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exp. decay  λ=0.39a

Figure 4.6: Exponential decay and CDW-character of the polarons

negative excess charge. Deviations from the exponential decay at larger dis-

tances can be attributed to a �nite size e�ect.

Tab.(4.1) shows the results of least square �ts to an exponential decay

of the hole charge:

�(r) = �center exp(� r
�
): (4.26)
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� �p=a �pcenter �b=a �bcenter

0.9 0.21 0.99 0.20 1.97

0.6 0.24 0.98 0.23 1.94

0.3 0.39 0.84 0.32 1.74

0.2 0.57 0.58 0.41 1.40

Tab:4.1 Re�ned decay lengths � and central charges �center

The order of magnitude of the decay length � is a fraction of the lattice pa-

rameter a. It is increasing with decreasing coupling constant and is bigger

for a polaron than for a bipolaron. The increasing degree of delocalization of

the solution with decreasing � is re
ected both in the increase of � and the

decrease of �center. For � > �c2, �center stays close to its maximum value and

the decay length is fairly small. We therefore conclude, that the (bi)polarons

are \small" (bi)polarons. The size of the polaron solution below �c2 is increas-

ing rapidly and evolves continuously into a \large" charge-density-wave-like

polaron-solution.

The increasing size of the (bi)polaron is re
ected in exponentially decay-

ing displacements of more distant oxygens. This �nally explains the behavior

of �EL and �Ee with �. In Sec.(4.3.2) we pointed out that from simple

perturbative arguments we would expect �Ee to decrease and �EL to in-

crease with decreasing coupling. However, numerics yields the opposite. A

polaron or bipolaron solution in a half-�lled band corresponds to a localized

fast-decaying anti-charge-density-wave. It is accompanied by corresponding

lattice distortions, that undo the Peierls distortion. Therefore the number

of oxygens that partly relax is increasing with increasing size of the density-

wave-like (bi)polaron. This leads to an additional contribution to the lattice
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relaxation energy �EL. On the other hand, the energy levels of some band

electrons get shifted to higher energies. This is the reason for the increase in

�Ee.

B. Single particle spectrum: appearance of localized gap-states

Accompanying the (bi)polaron solution are other localized states in the energy

spectrum. A total of up to seven gap-states appears in the energy spectra of

polaron and bipolaron. Their nature can be understood most easily start-

ing from the t = 0 limit. The hole(s) get(s) localized on one site and the

surrounding six oxygens relax to their new equilibrium positions. Therefore,

the on-site energy (this is the eigen-energy value when t = 0), given by the

electron-phonon term, changes for seven sites. The site where the hole is lo-

calized has its energy increased from �� = �6gu0 to ��
2
= �6g u0

2
for the

polaron and to 0 for the bipolaron. Their six next-neighbor sites have their

energy lowered from � to 11
12
� = g(5u0+

1
2
u0) and from � to 5

6
� respectively.

Thus, if t ! 0, we obtain seven gap states: one splits up from the valence

band and six degenerate split down from the conduction band.

Hopping partly lifts the degeneracy and shifts the gap states back to-

wards the conduction- and valence band. The numerical results are shown in

Fig.(4.7). For the s gap states a simple perturbative calculation can be done,

which agrees fairly well with the numerical results. Due to the localized na-

ture of the polaron we can restrict ourselves to the truncated 7x7 Hamiltonian

corresponding to the hole site and its six neighbor sites. We choose a site rep-

resentation and denote the site of the (bi)polaron by j0i and the surrounding

places by j+ xi, j � xi, j+ yi, j � yi and j+ zi, j � zi. The truncated matrix

consists of six non-zero o�-diagonal matrix elements, the coupling of j0i to its
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Figure 4.7: Gap state energy dependence on �

next neighbors by hopping, and the diagonal matrix elements, given by the

electron-phonon term.

In this basis set, the exact eigenstates of truncated Hamiltonian consist of

three p-states:

jpii =
r

1

2
(j+ii � j�ii) for i = x, y, z (4.27)

and two d-states:

jdx2�y2i = 1p
4
(j+xi+ j�xi � j+y i � j�y i) (4.28)

jd3z2�r2i = 1p
12
(2j+ zi+ 2j� zi)� j+ xi � j� xi � j+ yi � j� yi: (4.29)
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Furthermore, for t = 0 we can construct two s-states:

jsi = j0i (4.30)

js�i = 1p
6
(j+ xi+ j� xi+ j+ yi+ j� yi + j+ zi+ j� zi); (4.31)

which are only eigenstates when hopping is neglected.

The truncated Hamiltonian couples for t 6= 0 only jsi and js�i according to

hsjHjs�i = p
6t. We obtain an e�ective 2x2 Hamiltonian He� . The diagonal

matrix elements are given by the on-site energies of the polaron site and the

next neighbor sites. Once again it is necessary to introduce the vacuum cor-

rection, i.e. use the correct u0. u1 can be approximated by u1 = u0� g

k
, using

the fact that the charge removed from the polaron site stays close to 1. Thus,

hsjHjsi reads:

hsjHjsi = �6gu1 = �6g(u0 � g

K
) = ��+ 6

g2

K
(4.32)

and hs � jHjs�i equals:

hs � jHjs�i = 5gu0 + gu1 = �� g2

K
: (4.33)

The e�ective Hamiltonian �nally reads:

Heff = (
-� + 6g

2

K

p
6t

p
6t �� g2

K

) (4.34)

Solving the determinant yields the eigenvalues:

�s;s�
t

=
5

2
�� 1

2

p
(7�� 2�)2 + 24: (4.35)

If we include the strong coupling correction for � the leading correction to �s

is given by:

�s
t
�! �6� + 0:0891

1

�
for � >> 1 (4.36)
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or normalized to the gap:

�s
�
�! �1

2
� 0:0178

1

�2
for � >> 1: (4.37)

These results agree surprisingly well with the numerical data even for � < 1.

The stronger energy shift of the js�i-state is due to the fact that this state is

coupled to other sites as well.

The results show that the mixing between the s-states is small. This

gets certainly re
ected in the localization properties of the corresponding wave-

functions. The inverse participation ratio (IPR) 1
Pi

for a state i is de�ned as:

1

Pi
=
X
l

j	i(rl)j4; (4.38)

where the sum runs over all sites and measures the localization of a state. An

IPR of 1
P
represents a state that is localized on P atoms. The asymptotic values

IPR-values for �!1 for s-,p-,d- and s*-state are given by 1, 0.5, 0.25 and 1/6,

respectively, for both, polaron and bipolaron (see 4.27-4.31). With decreasing

hopping these states acquire an admixture of more delocalized states and the

IPR decreases. The numerical results, presented in Fig:4.8, show the predicted

asymptotic behavior with good agreement for � > 1.

These results support and complete the analysis from the previous sec-

tion. For � > �c2 the wave-function of the (bi)polaron-state is strongly local-

ized at one site. The energy stays close to �=2 and 0 respectively. Below �c2

the wave-function starts to delocalize and the gap-state energy merges rapidly

back into the valence band.
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4.4 Summary and conclusions

4.4.1 Toyozawa criterion for self-trapping in the half-

�lled band

The numerical results yield two kinds of (bi)polaron-like solutions. For cou-

pling constants exceeding � � 0:35 the (bi)polaron solutions show the typ-

ical properties associated with "small" (bi)polarons. An extremely narrow

(bi)polaron-band will form in the gap with energy �p � ��=2 and �b � 0, re-

spectively. The e�ective mass of the (bi)polarons is very large and the intrinsic
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mobility of the self-trapped states is small. Besides, the coherent motion of

the holes can be readily destroyed by impurities, e.g. the holes can be further

trapped by the acceptor atoms. As a result, incoherent, thermally-activated

hopping motion is expected to be the primary motion process.

For � < 0:35, polarons are \intermediate" sized. As � decreases their

size rapidly increases and the energy of the gap state merges back into the

valence band. Screening e�ects of the other band electrons become very im-

portant. These solutions can be described as spherical exponentially-damped

charge-density waves. Their mobility will increase with decreasing �. Trans-

port and optical properties of the CDW-like polarons in a weak coupling regime

should be similar to those of large polarons. Below �pc � 0:18 and �bc � 0:15

the polaronlike solutions are unstable.

The stability and the evolution of the polaron solutions for moderate

doping in a half-�lled band can be predicted by a "Toyozawa"-criterion [55] in

the spirit of Eq.(4.3), i.e. with the idea of competition between localizing and

delocalizing terms. The essence of this criterion is that in case of competing

terms, the system is in that state which is energetically favorable. Self-trapped,

i.e. strongly localized, solutions are stable when the electron-phonon term

dominates the total energy of the system. This yields � > 2 (see Eq.(4.4) in the

empty band case and � > �c2 =
1
3
in the (nearly) half-�lled band. For smaller

� a narrow transition range exists where hopping and electron-phonon term

are equally important. In the empty band as well as in the half-�lled band the

solutions start to delocalize rapidly with decreasing �. However, the empty and

half-�lled cases di�er in their ability to compromise between the two competing

terms. As soon as the single electron in the empty band starts to delocalize,

the oxygen distortion will be smaller, which corresponds to a reduction of the
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depth of the trapping potential. This again favors delocalization. Therefore,

since the trapping potential is created by the electron itself, the two terms can

hardly compromise. This is the reason why there exists only a short branch

of metastable solutions. The situation changes in the half-�lled band. The

depth of the trapping potential can be maintained due to screening e�ects of

the other electrons. The polaron solutions evolve smoothly from small to large

polarons and compromise between the two terms by gradually acquiring more

delocalized character in terms of CDW-like polarons. The polaron solutions

become �nally unstable, when hopping starts to dominate Ee, i.e. around

�c1 =
1
6
.

4.4.2 Bipolarons in the BBO-system

The results of this chapter suggest that small polaron or bipolaron forma-

tion could be the mechanism that accounts for the insulating behavior of

BaBiO3 under moderate doping. Bipolarons are the energetic stable solutions

in the RS-model neglecting electron-electron correlations, but polarons could

be in principle the energetically favorable quasi-particles. Polaron formation

in BaBiO3 can be excluded from experiment. Measurements of the magnetic

properties in doped BaBiO3 �nd a large core diamagnetism and provide no

indication of isolated spins [9]. This yields a singlet bipolaron state.

The nature of the bipolaron depends on the coupling constant �. For

BaBiO3 � was estimated in Sec.(3.5.2) to be � = 0:3. The RS-model predicts

the stability of small to intermediate sized bipolarons at this coupling strength.

The energy of the bipolaron band is slightly shifted from mid-gap towards the

conduction band.
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The transport data of moderate doped BaBiO3 reveal a transport gap

of 0:24eV [57][58]. This could be consistent with the picture of incoherent

motion of bipolarons (Fig.4.9). Thermally assisted hopping occurs via an

Figure 4.9: Thermally assisted hopping motion of a small bipolaron, black:
Bi+5 , white: Bi+3, grey: Bi+4

intermediate state of higher energy [51]. The transfer occurs between sites

with equal on-site energy. Thus two sites with the same distortion pattern

have to be created as an intermediate state. For small bipolarons the inter-

mediate state with the lowest activation energy has the distortion pattern of

two separated polarons and therefore activation energy �=2. The activation

energy for a polaron would be �=4. With the optical gap in BaBiO3 2� = 2V,

this would yield an thermal activation energy of 0:5 eV for a small bipolaron

model. Since the bipolaron band shifts to the conduction band with decreasing

coupling strength, which also diminishes the transport gap, an intermediate

sized bipolaron picture could explain the experimental observations.

Further experimental evidence for bipolaron formation comes from tun-

neling experiments, where a bipolaron model was successfully applied to ex-

plain the asymmetric background in the tunneling conductance [59].
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Chapter 5

Excitations across the Peierls

gap

5.1 Introduction

Theoretical models aim to identify the relevant interactions in a system, that

can explain the experimentally observed properties. The charge ordered ground-

state of the BaBiO3-system can be readily explained either on a charge-density

Peierls scenario with weak electron-phonon coupling or by strong electron-

lattice interaction in a bipolaronic crystal picture. These theories di�er in

their predictions for the behavior under doping. The �rst needs some mecha-

nism that allows the gap to stay at the Fermi-energy, e.g. by the formation of

incommensurate charge density waves. Whereas with strong electron-phonon

interaction, the formation of small polarons or bipolarons is predicted. An-

other way of revealing the nature of the ground-state is by studying its excita-

tions. The usual probe of excitations in a solid are optical experiments. One
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of the �rst puzzling features, that could not be explained with the simple one

electron band-structure, was the existence of distinct peaks below a direct ab-

sorption edge in the absorption spectra of many narrow-gap semiconductors.

This lead to the exciton concept, i.e. to the insight that correlation e�ects,

in form of Coulomb attraction and exchange interaction, between the excited

electron and the remaining hole have to be included to describe these excita-

tion accurately. Exciton physics has been studied extensively, exploring the

whole range from a large Wannier-Mott exciton to a propagating molecular

crystal-excitation in the Frenkel model. However, apart from indirect absorp-

tion edges, the role of electron-phonon interaction in the excitation process got

little attention. Since the excitons in most narrow gap semi-conductors are

extended over the entire crystal, the electron-phonon term only acts as a weak

scatterer on the free exciton states and can be neglected. On the other hand, in

moderate to large gap insulators the signi�cance of the lattice relaxation pro-

cesses has now been established in a variety of materials, e.g. rare gas solids,

alkali halides, silicon dioxide or organic molecular crystals, just to name some

of them [60]. The question how atoms move after the optical excitation and

which positions they �nally take after relaxation is of considerable interest as it

reveals the nature of interatomic forces and thus leads to a better understand-

ing of the ground-state. The theoretical approach in the \traditional" theory

of self-trapped excitons is performed on the same footing as small polaron the-

ory and aims to explain line-shape features of exciton-peaks and shifting and

line-shape in luminescence spectra [50], [55], [56]. The exciton is treated as

a neutral quasi-particle interacting with acoustical phonons in a deformation-

type potential. In three-dimensional systems, free and self-trapped state are

always separated by a potential barrier. Predominantly free excitons are cre-
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ated in the absorption process which tunnel into the self-trapped state, where

they further relax [55]. The signature of the relaxation process in these mate-

rials is therefore more clearly seen in luminescence than in absorption spectra

[60]. BaBiO3 behaves in many respects di�erent from conventional semicon-

ductors. Optical experiments do not resolve exciton peaks, instead they show a

pronounced rather symmetric peak, which is associated with excitations across

the Peierls gap. The residual absorption in the gap is not well understood yet.

We believe, that relaxation of the oxygens could play a key role to under-

stand the excitations in the BBO system. Thus, the goal of this chapter is to

study the nature of the relaxed excited states obtained in the RS-model. We

will further neglect Coulomb interaction between hole and electron. Coulomb

attraction between the excited electron and hole will primarily lead to an ad-

ditional energy shift, but the important physics lies in the coupling between

the electronic system and the lattice. The term \self-trapped exciton" in the

next chapters is used to emphasize the importance of lattice relaxation in the

excitation process. The term exciton is meant on a more general basis as it

does not deal with alterations caused by direct interaction between hole and

electron.

We start in this chapter by brie
y contrasting the di�erent kinds of

excitations expected for weak and strong electron-phonon coupling in a charge-

ordered system. Then the numerical studies on the stability and nature of the

self-trapped exciton are analyzed. The impact on the absorption spectra is

discussed in the next chapter.
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5.2 Low lying excitations in the charge-ordered

system

5.2.1 Weak electron-phonon coupling: CDW-picture

An electronic system with a nesting instability at the Fermi energy and which is

only weakly coupled to the phonon system, will not self-localize its excitations,

analogously to its behavior under doping. This behavior is observed for exam-

ple in the quasi-one dimensional system K0:3MoO3. Besides the single particle

excitations across the gap, it has lower lying collective mode excitations. These

are diÆcult to describe within a microscopic theory and are usually treated

within a within the framework of time-dependent Ginzburg-Landau theory

[24]. Since the order parameter is complex, phase- and amplitude excitations

are expected. Both excitations have a gap in case of commensurate CDW's

[24]. In an adiabatic limit the amplitude excitation would occur at the gap-

energy. However, since the amplitude mode couples to the displacements of

the ions, the oscillation frequency is usually smaller than 2�=�h.

If the BBO-system is a three dimensional version of a weak-coupling CDW,

similar excitations should be present.

5.2.2 Strong electron-phonon coupling: bipolaronic crys-

tal picture

The idea of a self-trapped exciton evolves naturally from the bipolaronic crystal

picture. In the ground-state two electrons are localized on each A-site and one

can think of them as electron bipolarons (due to perfect particle-hole symmetry
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of the problem, we could choose the holes as well). In this localized view two

kinds of excitations are in principle possible:

1. transfer of the bipolaron as a whole from an A- to a B-site;

2. transfer of an electron to a neighboring B-site, leaving formally a hole

on the A-site.

The energies of these excitations di�er roughly by a factor of two. Since the

focus of this chapter lies on the low lying excitations, we proceed with a more

detailed analysis of the lower energy single-electron transfer excitations.

The excitation and relaxation process

The break-up of an electron pair destroys the balance of the forces acting on

the oxygens and changes their rest positions. In a classical picture we expect

the oxygens to start to vibrate around these new equilibrium positions. The

amplitude of the oscillation, and thus classically the energy residing in the

vibrational system, is given by the di�erence between old and new rest posi-

tions. In order to reach the �nal relaxed excited state, the vibrations have to

be damped. The quantum-mechanical analog is not that far away. The exci-

tation process can be described as a simultaneous creation of a charge excita-

tion together with vibrational excitations or phonons. In the Franck-Condon

approximation (see Chapter 5) the number of vibrational quanta created is

increasing with increasing di�erence between old and new rest-positions. The

local oxygen vibration mode is coupled to other crystal modes and thus allows

the oxygens to relax to their new equilibrium positions.
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Energy of the relaxed excited state for no hopping

For the t = 0 case the energy of the relaxed excited state can be calculated

very easily. The relaxed state with the lowest energy is obtained when one

electron on the A-site has been transfered to one of the six neighbor sites.

A total of eleven oxygens relax, changing the on-site energy of twelve sites.

The oxygen-atom connecting the two charge-transfer sites relaxes completely

Figure 5.1: The self-trapped exciton, black: Bi5+, grey: Bi4+, white: Bi3+

u1 = 0 and the other ten oxygens relax half-way back u2 =
u0
2
. This leads to

a reduced elastic energy cost of:

�EL =
K

2
(�u20 + 10(

u20
4
� u20)) = �17g

2

K
: (5.1)

The energy of the remaining electron on the \hole"-site is given by its on-site

energy:

�h = �5gu2 � gu1 = �5g
2

K
: (5.2)
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Since the problem exhibits perfect electron-hole symmetry, the energy of the

transferred electron is:

�e = 5gu2 = 5
g2

K
: (5.3)

The 5 sites (containing 10 electrons) surrounding the transferred electron have

their energy increased from � = �6gu0 = �12g2
K
to � = �5gu0� gu2 = �11g2

K
.

Compared to the ground-state the electronic energy �Ee therefore changes

by:

�Ee = (� + �h) + (� + �e) + 10
g2

K
= 34

g2

K
: (5.4)

The total cost of this excitation or the excitation formation energy is:

Eexc = �Ee +�EL = 17
g2

K
: (5.5)

Without lattice relaxation the minimum excitation energy is given by 2� =

24g
2

K
. This yields a relaxation energy of:

�exc = 2�� Eexc = 7
g2

K
; (5.6)

and is the binding energy of the self-trapped exciton. Fig.5.2 is an attempt to

display the energy dependence of ground and excited state on the amount of

lattice distortion. The optimal oxygen positions of both states are smoothly

connected by changing a one-dimensional parameter �, where � = 0 corre-

sponds to positions of the ground-state and � = 1 to those of the excited

state. The energy is computed along this path. Both states change quadrati-

cally with �. In the initial ground-state oxygen positions at � = 0, the states

are separated by the gap 2�. The relaxed excited state at � = 1 has its energy

lowered by �exc = 7g
2

K
. Including on-site Coulomb repulsion the energy-curve

of the excited state is shifted downwards by the Hubbard U .

74



0 0.2 0.4 0.6 0.8 1
α

0

5

10

15

20

25

E
 (

g2 /K
)

2∆

Eexc

εexc

Figure 5.2: Potential energy of ground state and excited state at t = 0

5.3 Numerical results

This section studies numerically the stability and nature of relaxed excited

states with t 6= 0.

5.3.1 Notes on the numerical calculations

In order to �nd the relaxed excited state with the lowest energy, the total

energy of the system is minimized with the algorithm described in chapter 2.

One electron is removed from the highest-lying valence band state and inserted

into the lowest-lying conduction band state. Then the positions of the oxygens
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are varied. Candidate initial oxygen positions are the Peierls ground state

solution or the polaron distortion pattern. Cluster size and �nite size e�ects

are comparable to those of the polaron calculations (200-400 atoms).

5.3.2 Existence of relaxed excited states

Most of the physics for the self-trapped exciton is the same as in the polaron

case. Since perfect electron-hole symmetry occurs, one can think of the self-

trapped exciton as an interacting electron-polaron hole-polaron pair, which

attract each other.

An energy gain by lattice relaxation was obtained numerically if � >

�c = 0:175. This is very close to the polaron stability limit (�c = 0:18).

Metastable solutions exist at any � > 0:175, when hole and electron are

trapped further apart from each other. Like the polaron, the free state is

always unstable when a relaxed state exists. The potential curve of the ex-

cited state in Fig.(5.2) has a zero slope at � = 0 for t 6= 0. However, there is

no potential barrier separating the two states along this path. This contrasts

with the traditional exciton case [53][56], where a free and trapped state always

exist separated by a potential barrier.

The energetics of the self-trapped state and the polaron are almost

identical. The changes in the vacuum and screening e�ects of other band

electrons make it diÆcult to obtain easy perturbative formulas. The numerical

calculations show once more a cancellation e�ect of the nonlinear contributions

to �Ee and �EL. Thus, the relaxation energy �exc can be approximated

quite well by simply inserting the strong coupling formula for � Eq.(3.21) into
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Eq.(5.6):

�exc
t
� 7�� 1

2�
: (5.7)

The numerical results are shown in Fig.(5.3). Eq.(5.7) agrees well with the

numerical results for � > 0:4 and �exc approaches asymptotically the t = 0

limit 7g
2

K
.
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5.3.3 Nature of the relaxed excited states

The evolution of the relaxed excited states with � is very similar to that of

polarons. For suÆcient electron-phonon coupling strength, the relaxed excited

state is a self-trapped exciton. The self-localized object a�ects only states in

its direct environment. The local change in the oxygen environment leads to

the appearance of localized gap states (Fig.(5.4)). Six states emerge from the

valence band and six from the conduction band, re
ecting the perfect electron-

hole symmetry. The �ve occupied valence band states are slightly shifted by g2

K

and correspond to electrons localized on the sites surrounding the B sublattice

site now occupied by the excited electron (called the \exciton-electron" for

short). They approach their asymptotic (symmetry determined) IPR values

of 1
5
, 1
4
, 1
2
(doubly degenerate) and 13

20
. Their degeneracy gets partly lifted when

they couple to other sites by hopping. The states spread out, as can be seen in

the continuous evolution of their IPR-values in the inset in Fig.(5.5), and their

energies shift toward the valence band. The same is true for the two states

occupied by the exciton-hole and exciton-electron. We calculated the mean

radius hri of these two states, shown in Fig.(5.5). A radius of 0 corresponds

to the complete localization of the wave-function at one site. The particles are

con�ned approximately to one site for � > 0:4. For � < 0:4, they delocalize

rapidly, as indicated by the diverging radius. The �nite value at �c is close

to the �nite system size of the numerical calculations. It should be clear that

a delocalized exciton cannot create a trapping potential by itself, since the

time spent at one site is too short to cause the oxygens to move. The stability

of these spread-out relaxed states is maintained by screening of other band

electrons. The self-trapped exciton therefore evolves smoothly into a localized
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Figure 5.4: Exciton gap states

amplitude excitation of the charge-density wave, like the small polaron was

evolving into a large CDW-like polaron.

5.4 Conclusions

The Rice-Sneddon model exhibits two kinds of relaxed excited states depend-

ing on the coupling strength �, and re
ecting the competition of localizing and

delocalizing terms in the Hamiltonian. The relaxed excitations in the coupling
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range of bipolaronic crystal � > �c2 are self-localized excitons. They are most

easily understood as a break-up of a crystal-bipolaron with subsequent lattice

relaxation.

In the transition range between a bipolaronic crystal and a CDW-

system, the relaxed excited states show the signature of localized amplitude

excitations of the CDW-ground state. Their bene�t from relaxation �exc is

small. Thus non-adiabatic e�ects, which are not treated in our model, will

also enter.
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Finally, below � < 0:175 � �c1 the adiabatic approximation will def-

initely fail. Besides the single particle excitations across the gap, collective

mode excitations, similar to the one-dimensional weak-coupling CDW-systems,

should exist.
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Chapter 6

Manifestation of self-trapped

states in experiment

6.1 Introduction

The previous chapters analyzed the competition between hopping and electron-

phonon term with respect to dopants and with respect to excitations. Self-

trapped states are stable if the electron-phonon term exceeds a certain strength.

BaBiO3 has an electron-phonon coupling strength which is large enough for

excitons to self-trap, but not quite in the electron-phonon dominated regime

where single-site approximation is accurate. It is the aim of this chapter to

relate the microscopic theory of self-trapped states to experiment. Optical

experiments provide a good opportunity to compare experiment and theory.

The optical properties of a material are described phenomenologically by the

dielectric function �(!) = �1(!) + i�2(!), which can be extracted from experi-

mentally accessible quantities like the absorption coeÆcient, the re
ectivity or
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the optical conductivity. The microscopic theory on the other hand provides

expressions for the number of transitions induced by light with frequency !,

and thus allows to compute the imaginary part of the dielectric function. Since

real and imaginary part are related by the Kramers-Kronig relation, the entire

behavior is determined once �2 is known.

6.2 The half-�lled band

The absorption process in solids is complicated and is in
uenced by many

factors. This requires to introduce some level of simpli�cation for computation.

One criteria to check whether the important physics was included in a model, is

the comparison of the line shape of �2 between theory and experiment. In many

solids the line shape is dominated by the joint-density of states. Therefore we

�rst discuss in this section the density of states e�ect in the Rice-Sneddon

model without taking self-trapped exciton formation into account. Then we

analyze the changes predicted due to strong lattice polarization, and brie
y

discuss other experiments in which a signature of a self-trapped exciton is

expected.

6.2.1 DOS-e�ect

In the simplest approximation only linear absorption in electric-dipole approx-

imation is taken into account, and any lattice or Coulomb interaction polar-

ization e�ects are neglected. The incoming light induces vertical transitions of

electrons in the valence band with energy Ev(~k) into states in the conduction

band with same ~k and energy Ec(~k). Since the dipole-matrix element usu-

ally changes smoothly with ~k, except at certain k-points where the transition
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is forbidden by symmetry, the basic behavior of �2 is dominated by critical

points, i.e. divergences, in the joint-density of states Dj(!):

Dj(!) =

Z
BZ

2d3~k

(2�)3
Æ(Ec(~k)� Ev(~k)� �h!): (6.1)

The simplicity of the Rice-Sneddon model allows to include expressions for the

dipole-matrix elements in the computation of �2. Vertical transitions between

the lower ~k�i and upper Peierls band ~k+i occur at energies:

Ec � Ev = �k+ � �k� = 2
q
�2k ��2; (6.2)

with �k is given by Eq.(3.1).

The dipole-matrix element for transitions between these states can be evalu-

ated using the expression for the momentum matrix elements in site represen-

tation:

h(~l � aĵjp̂jj~li = � ta
i�h

for j = x̂; ŷ; ẑ (6.3)

and

h~l0j~pjj~li = 0 otherwise: (6.4)

This yields:

hk � jp̂xjk+i =
1

N

X
l;l0

eikx(l�l
0)ahl0jp̂xjli

=
tax̂

�hi
(eikxa � e�ikxa) =

2ta

�hi
sin(kxa): (6.5)

For unpolarized light we therefore obtain for �2:

�2(!) =
4e2t2

m2!2��h2

Z
BZ

d3~k(sin2(kxa) + sin2(kya) + sin2(kza))

� Æ(2
q
�2k ��2 � �h!) (6.6)
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Figure 6.1: �2 in the RS-model without taking lattice polarization e�ects into
account

This integral can be evaluated numerically with a tetrahedron code[30][31].

Results corresponding to �
t
= 3 are shown in Fig.6.1. The overall behavior

of �2 is clearly dominated by the divergence of the joint-density of states at

incident frequencies ! = 2�
�h
. The peak corresponds to transitions from states

at the top of the lower Peierls band into those at the bottom of the upper band.

These states however are mainly responsible for the charge disproportion and

have vanishing amplitude on the A and B sites respectively. The larger the

electron-phonon coupling strength is, the more easily can their phase coherence

be destroyed. This means that these states tend to localize. Excitations

85



created in transitions between localized states, on the other hand, self-trap

very easily. Thus, since transitions between these states are highest in density

we expect the overall line shape to be dominated by the signature of self-

trapped excitons.

6.2.2 Franck-Condon e�ect: signature of the ST-exciton

The Franck-Condon principle

Materials with self-trapped excitons show Franck-Condon-type broadening of

the electronic transition. The Franck-Condon e�ect is well known among

molecular spectroscopists. Molecular excited electronic states generally have

altered atomic coordinates. Thus, the excitation process can be described as a

simultaneous creation of an electronic excitation and nuclear vibrations. This

leads to the appearance of Franck-Condon multivibrational sidebands in the

electronic spectra [61]. In simple solids, excitations are usually delocalized

which eliminates this e�ect [56]. However, in case of self-localized states, be-

cause of their signi�cant lattice relaxation, Franck-Condon-type broadening of

the electronic transitions must reappear.

The Franck-Condon principle has its physical origin in the fact that the

electronic transition occurs on a time scale that is several orders of magni-

tude shorter than the period of the atomic vibration, in agreement with the

assumptions behind the Born-Oppenheimer separation. This means that the

positions of the atoms R during an electronic transition �! �0 do not change.

The wave function ��n(r; R) of the electron-phonon system corresponding to

the energy E�;n, can be factorized in an electronic  �(r; R) and a vibrational

��n(R � R�) part.  � is the solution with energy ��(R) to the Schr�odinger
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equation for an electron in the potential of the atoms characterized by the adi-

abatic parameter R, and ��n(R�R�) is the solution for the atomic vibrations

in the potential W�(R) = U(R) + ��(R).

The dipole matrix element P�n�0n0 therefore can be written as:

P�n�0n0 =

Z
dR��n(R �R�)��0n0(R� R�0)

Z
dr �(r; R)P̂ �0(r; R) (6.7)

This integral can be large even when the vibrational quantum numbers n,

n0 are quite di�erent from each other, because the vibrational wave-functions

��n, ��0n0 are o�-set from each other. The second integral in Eq.(6.7) depends

in general on R, but neglecting it is a standard approximation and should

not cause much error. Vibrational transitions have intensities governed by

the Franck-Condon factor h�nj�0n0i = R dR��n(R�R�)��0n0(R�R�0). Those

transitions are the most probable, whose probability maxima of the vibrational

wave function occur approximately at the same R. This however, depends only

on the relative shifts in R��R�0 of the of the adiabatic potentials W�(R) and

W�0(R).

Temperature enters the absorption, since in thermal equilibrium the ensemble

of the system is distributed over vibronic states �n with probabilities w�n. As

long as the thermal energy kBT = ��1 is much smaller than the energy separa-

tion between the electronic ground state (�) and excited (�0) states, the system

is certainly in the electronic ground state, and the optical absorption for light

with frequency ! corresponding to the electronic transition is proportional to:

�2(!) / jP��0j2
X
n

X
n0

w�njh�nj�0n0ij2Æ(�h! + E�n � E�0n0) (6.8)
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Franck-Condon e�ect for the ST-exciton

At zero temperature, the broadening of the electronic transition comes from

the zero point motion of the oxygens and the sum over n in Eq.(6.8) has only

one term, w�n = Æn;0. The excited electron states, in single site-approximation,

couple to eleven oxygens, which are treated as independent Einstein oscilla-

tors with frequency !0 and oxygen mass M in our model. They move in

harmonic potentials and thus the vibrational wave function for initial and �-

nal state can be written as a product of the 11 wave functions corresponding

to oscillators. The wave function of an oscillator in the ground state takes

the form ��0(R) = exp(�M!0
�h
(R � R�)

2) and in the excited state ��0n(R) =

Hn(R�R�0) exp(�M!0
�h
(R�R�0)

2), where Hn is a Hermite polynomial of order

n and R�, R
�0 are the rest positions of the oscillator in initial and �nal state,

respectively. The energy di�erence between initial and �nal state is given

by the exciton formation energy Eexc plus the total number n of vibrational

quanta created on the 11 oxygens:

E�0 � E�0n0 = Eexc + n�h!0: (6.9)

The Franck-Condon factor is a product of eleven vibrational overlap integrals

of the form jh0jniij2 with:

h0jnii =
�
�2

2

�ni
2 (R� �R�0)

ni

p
ni!

exp(��
2

4
(R� � R�0)

2); (6.10)

where � =
q

M!0
�h
. To obtain the total absorption at a frequency �h! = Eexc +

n�h!0, we have to sum over all di�erent possibilities to distribute n quanta over
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the eleven oxygens:

X
n1;n2;:::;n11

jh0jn1ij2jh0jn2ij2:::jh0jn11ij2Æ(
11X
i=1

ni � n)

=

�
Er

�h!0

�n
1

n!
exp(� Er

�h!0
); (6.11)

where Er is an energy associated with the lattice relaxation:

Er =
K

2

11X
i=1

(Ri � R0
i)
2: (6.12)

For the self-trapped exciton Eexc = 2���exc = 17
12
� and Er =

K
2
(10u0

2
2+u20) =

7
12
�. Thus, �2 is in single-site approximation:

�2(!) =
4�2e2

m2!2

X
n

1

n!
(

7
12
�

�h!0
)n exp(�

7
12
�

�h!0
)Æ(�h! � 17

12
� + n�h!0) (6.13)

Fig.6.2 shows the absorption expected with a gap of 2:0eV coupled to phonons

with breathing-mode frequency !0 = 70meV. In the idealized case absorp-

tion occurs at discretized frequencies corresponding to di�erent numbers of

vibrational quanta created in the absorption process. In reality these peaks

certainly get broadened and discrete peaks may not be seen in experiment.

The overall line shape should look similar to the envelope function of Fig.6.2,

with maximal absorption at ! = 2� and signi�cant absorption in the gap.

For non-zero t we argue according to the DOS-e�ect described in Sec.(6.2.1).

For not too large values of the hopping parameter t (i.e. within the self-

trapping regime), the absorption spectra will be dominated by the creation

of highly vibrational excited self-trapped excitons with some additional ab-

sorption at higher energies corresponding to transitions from states from the

bottom of the lower to the top of the upper Peierls band. Since these states

are delocalized, they do not self-trap and probably can be treated in a simple
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Figure 6.2: Franck-Condon type spectra for the self-trapped exciton

band-to-band transition picture. A uni�ed treatment of band- and Franck-

Condon e�ect would not be easy and we have not succeeded in doing it.

The temperature e�ect up to room temperature is very weak. At

T = 300K the probability to �nd a phonon on one of the eleven oxygens is

less than 6%. The analytical calculations for temperature corrections become

increasingly tedious. Fig.6.3 shows a �rst temperature correction obtained

numerically. Temperature enhances slightly the absorption in the low energy

regime and shifts the on-set of absorption to smaller energies.
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Figure 6.3: First temperature correction to �2

6.2.3 Experimental impact and comparison to experi-

ment

ST-exciton in the optical conductivity

Numerous optical experiments have been performed on the BBO-compounds.

Optical response data in the mid-infrared regime for the undoped material

has been published e.g. by Karlow et. al [41], Blanton et al. [42] and Kozlov

et al. [62]. The line shape of the optical conductivity is similar to the curve

obtained by formation of self-trapped excitons. However, the full width at
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half maximum (FWHM) between experiment and the theoretical prediction

from our simple model di�ers by a factor of two (FWHM 1.0V (experiment)

compared to 0.5V (ST-exciton)). Besides, there is residual conductivity below

1.4V. Some density functional calculations �nd an indirect gap [63], which

was employed in Ref.[62] to explain the absorption in the gap. However, band

theories based on current approximate density-functional procedures tend to

underestimate gaps fairly badly and do not give a reliable information about

gaps in BaBiO3. Instead we believe that the residual absorption is caused by

local defects in the charge-ordered state through excitations into gap states.

Besides Coulomb interaction was not taken into account in our model. This

will shift the on-set of absorption.

Coupling between electronic and lattice excitation

Clear experimental support for the creation of self-trapped excitons in BaBiO3

comes from Raman experiments [43]. The Raman spectra is dominated by an

extreme strong peak at 570cm�1, which was assigned to the breathing mode

phonon. Contrary to the Raman-e�ect in usual semi-conductors, a series of

higher harmonics is observed. This is consistent with the existence of virtual

excited states composed of electronic and vibrational quanta, and thus allows

to observe the higher harmonics.

Most excitons created in the absorption process are highly vibrational

excited states. Before electron and hole recombine, the exciton relaxes by the

emission of phonons. The maxima of the luminescence peak should therefore

be red-shifted with respect to the absorption peak. Moreover, a decrease in

the di�erential transmission for energies below 2� is expected in time resolved

spectroscopy experiments. The �rst pulse creates highly vibrational excited
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excitons. They relax by the emission of phonons and which means that the

oxygens relax into their new equilibrium positions. This however, corresponds

to the appearance of the gap states below the conduction band, into which

electrons can be excited by the second pulse.

To conclude the excitations across the Peierls gap in BaBiO3 show the

signature of self-trapped excitons. However, improvement of our simplest

model is necessary to obtain better agreement between the experimental and

theoretical optical conductivity curves.
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