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Figure 1: Contour C;. X’s mark the poles of 1/(e?™# — 1).

Poisson Sum Formula

Suppose we wish to evaluate a sum over all integers (positive, negative, and zero), that is, we want
to evaluate something particular like

> 1
F@)= 2. oy )
n=-—co
The answer happens to be F(z) = (n/z)coth(nz) as will be proved below. The general form of the

problem is
(o0}
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where f(n) = 1/(z® + n?) or g(in) = 1/(z® — (in)?) in the particular case of eq.(1). The Poisson sum

formula is
St 2rmz
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where the contour C; is shown in fig. 1. The formula holds for any integer m and any g(z) provided the
function g(z) is analytic in a neighborhood of the imaginary 2z axis where the contour runs.

To prove the Poisson sum formula, note that the function €2™™2/(e?™# — 1) which appears in the
integrand of eq.(3) has simple poles of residue 1/27 at z = in for all integers n. Then the Cauchy
theorem tells us that if g(z) is analytic inside the contour C;, the integral is just 27i times the sum of
the residues g(in)/2x. The integer m can be chosen at will according to the problem at hand.

Now let us return to our example where g(z) = 1/(z® — 2?). This is analytic as required, having
simple poles at z = +x. The positions of the poles of the integrand are shown in fig. 2 for the case x = 2.
The contour C; can be deformed in regions of analytic behavior, and is equivalent to the path shown in
fig. 2. This path has three circuits, C; which recedes to |z| — oo, and C3 and C4 which surround the
poles of g(z). It also contains the double straight segments L and R which can be chosen so that the
forward and reverse paths lie on top of each other and cancel. Now the aim will be to argue that the
large circular contour Cg contributes nothing, so that the answer is found from the simple contours Cg
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Figure 2: The equivalent contours Co + C3 + C4. Two new poles denoted by additional x’s are shown
from the function g(z) = —1/(2? — z?).

and C4. The large z behavior of g(z) is favorable, decreasing as 1/22 which is sufficiently fast to make
the contour Cs contribute nothing provided the remaining factor e2™™2 /(e?™# — 1) does not diverge along
Co. If m is negative, it diverges for large negative z and for m greater than 1 it diverges for large positive
z, so there are two choices that work, m = 0 and m = 1. Writing g(z) as the sum of two simple poles
2zg9(2) = 1/(z + z) — 1/(2 — ), one can verify using Cauchy’s theorem that the contours Cz plus Cy
generate the answer F' = (w/z) coth(nz) for both choices m =0 and m = 1.

Now let us apply this to “temperature Green’s functions” found in lattice dynamics. A modified
version of eq.(3) with new variables appropriate to such problems is

em,Bz

5 S = 5o ds o S(o) ()

where 4w, is the Matsubara frequency 2mip/6 and p runs over all integers. For example, the temperature
Green’s function of a harmonic lattice is

h 1 1

G(k,iw,) = - 5
(k%) = 3370, [iw“ “h  iw, + R 5)
while the value at the “imaginary time” ¢ is given by the Fourier transform
- 1 . -
G(k,0) = 3 > e ne Gk, iwy). (6)
)

We evaluate this Fourier transform using the Poisson sum eq.(4). Therefore, f(2) is

h —0z 1 1
1@ = 3r70.¢ [z—hﬂk z+ 70| @

Like our simple example above, this has two simple poles, at z = £/, and (apart from the dangerous
factor exp(—oz)) it behaves as 1/z? for large |z|. The contour C; is thus replaced by Cs + Cs + Cy,
and we enquire whether we can ignore the difficult contour Co. The dangerous factor exp(—oz) comes in
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Figure 3: The contour surrounding the poles on the imaginary axis has been deformed to two new
contours surrounding the branch cuts of the function g(z) = log((b? — 22)/(a? — 2?)) where the points a
and b lie on the real axis as shown.

combination with exp(mgz), that is, we have exp((m8 — o)z). If ¢ is positive, then to prevent a problem
at negative z it is necessary to choose the integer m positive to make mfB — o positive. But then there
will be a problem at positive z unless the exponent 8z in the denominator is larger than (mg8 — o)z in
the numerator. Thus a unique choice of m is dictated which makes mg8 — ¢ lie in the interval (-3, 0).
Since this _exponent is the only place where the variable ¢ occurs, it is clear that choosing m in this way
makes G(k, o) periodic in ¢ with period 8, a result which agrees with the Fourier representation eq.(5).
Thus it is sufficient to evaluate for ¢ in the range (0, ) in which interval m must be chosen as 1. Using
this choice, and using Cauchy’s theorem on the circuits C3 and Cy4, one finds

G(k,0) =— [(nk +1)e oM% 4 nke"m’“] , (8)

_h
2MQy,
where ny, is the Bose-Einstein occupation function ny = 1/(exp(8h€;) — 1). It is important to remember

that this formula must be evaluated for ¢ modulo 8, such that 0 < o < 8.
Now let us evaluate a different sort of sum,

b2+n 27rmz b2—22
Z log (a2+n2) = 7{ dz e log (a2—z2)' (9)
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We assume b > a. The deformed contour is shown in fig. 3. For large |z|, the logarithm gets small as
1/22, so the piece of the contour at infinity can be neglected, provided the choice m = 0 or m = 1 for
the free integer m is taken. The function log(z) = log(|z| exp(i¢)) = log(|z|) + i¢ has multiple branches
corresponding to the possible choices of the phase ¢ differing by multiples of 27. By choosing |¢| < =, the
logarithm becomes single-valued, at the price of having to make the discontinuous switch from —x to 7.
For our function g(z), this discontinuity occurs as we cross the real axis for a < |Rz| < b. Approaching the
real axis from above on the positive Rz side, the phase increases to w. After crossing the axis, the phase
continues to increase, but we agreed to keep |¢| less than = so we have to subtract 27. The logarithm
is log|(b? — 22)/(a® — 2%)| with zero imaginary part except for in a < |Rz| < b where the imaginary
part is +im above the axis on the positive side, —im below the axis on the positive side, and opposite on
the negative side of the real axis. The log part of the integrand is analytic except on these two lines of
discontinuity, so the deformed contour circulates around the branch cuts as shown. The real part of the
log cancels as we integrate forward and back from a to b, and the imaginary part is twice the value in
the forward direction.
The integral (9) thus becomes

27rmz —a e27rmz
—27T/ dZ /;b dzm (10)



Since m = 0 and m = 1 are equally valid, the simplest proceedure is to use the average of the two,

1 1 d
== = i . 1
5 coth(mz) 5 13 log[sinh(7z)] (11)
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The two integrals of eq.(10) are equal, and the answer is

5 g [ 0450

sinh(wa) (12)



