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Abstract of the Thesis 
 

Sodium-Fluoride clusters: 

A theoretical study 
 

by 

Christian Gerhard Schmidt 

 

Master of Arts 

in 

Physics 

 

Stony Brook University 

2004 

 
 

Using density functional theory, geometries, energies and dipoles are calculated for a 

range of Sodium-Fluoride clusters. Starting with the free ions and atoms, the size 

dependence of these properties is studied up to the largest investigated cluster, Na18F18. In 

addition, the vibrational spectra with the infrared- and Raman-activities of the modes are 

computed. Electronic and vibrational polarizabilities are also calculated, where we used 

the dependence of the vibrational part on the vibrational frequencies and the dynamical 

charges of the cluster. Compared to the sum of the ionic values, an increase in the 

electronic polarizability is found, which is especially pronounced for small clusters. This 

phenomenon is explained with a LCAO model for the HOMO and LUMO orbitals of 

those clusters. In general, a strong dependence of all cluster parameters on the 
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conformation of the constituting atoms can be found. Therefore the application of 

classical models is restricted to specific cases, where they can be highly useful 

guidelines, as is shown in the example of the quadrupole polarizability of the Na4F4 cube 

cluster.   
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Chapter 1    

Density functional theory 

 
 
 
 

1.1   Introduction & Theory 
 
In the following thesis, we study a broad range of NaF-clusters with density functional 
theory (explained in the present chapter). Starting with the single nuclei cases and going 
to clusters as large as Na18F18, properties like geometry, energies, dipole moments and 
polarizabilities, as well as the vibrational spectra and their infrared and Raman activity 
are computed in chapter 2. Several interesting and surprising results are found, e.g. a 
large increase of the electronic polarizability in smaller clusters compared to the sum of 
the free ion values. Most of the phenomena are investigated and interpreted quantum 
mechanically.  
     Furthermore, we look at the formation energy of several clusters to estimate this 
number for the bulk crystal. Vibrational modes and their geometrical shapes are 
computed for many clusters by using group theory. Their dependence on the cluster 
geometry becomes especially obvious for the two isomers of Na4F4 (cube and ring).  
     Following this, chapter 3 contains a summary of classical models. In addition, two 
specific cases are analysed classically with respect to induced dipoles & quadrupoles as 
well as polarizabilities. 
 

1.1.1   A brief history  

With the development of quantum mechanics at the beginning of the previous century, 
the knowledge of physics was enriched by a powerful theory, whose capability cannot be 
underestimated. Nevertheless it was evident that apart from the very simplest problems it 
is almost always impossible to find good approximate solutions to Schroedinger’s 



 2 

equation, the task becoming more and more intricate with the number of particles in the 
system. 
     For many-particle systems Hartree and Fock developed an iterative method and finally 
in the 1960’s Kohn, Hohenberg and Sham presented their first formulation of a method 
which only tries to find the total electron ground state density instead of the whole many-
particle wavefunction [1,2], which was later named density functional theory (DFT).  The 
heart of DFT is that the problem of solving Schroedinger’s many-particle equation can be 
reduced to a set of effective single-particle equations, where the only non-straightforward 
part is a functional of the density which models the exchange and correlation part of the 
total energy (Exc). The first practical functional was the local-density-approximation 
(LDA), but many different models have been and are still developed, among them the by 
now standard generalized-gradient-approximations (GGA).  
     Currently DFT is a highly useful tool to tackle a large number of problems and the 
major remaining task is still the improvement of the Exc-functional. The interested reader 
can find a more detailed discussion of the content of subchapter 1.1 in [3]. 
 

1.1.2   The most important ideas behind DFT 

Before we work out the theoretical framework and finally arrive at the desired Kohn-
Sham-equations, which then have to be iterated until self-consistency is reached, it should 
be helpful to summarize the general ideas that lead to DFT.  
     Knowing that for chemistry and solid state physics we only need to think about 
electromagnetic interactions in the framework of quantum mechanics, it is important to 
conceive procedures that simplify this task. The first principle applied in DFT is the 
Born-Oppenheimer approximation, which means that we essentially treat the nuclei 
classically and only consider the electrons moving in their electrostatic potential. As a 
second step we agree that the multi-electron wavefunction contains far more information 
than we need, and therefore merely look for the electron density. Last but not least we 
learn from the Ritz variational principle, that the ground state of a system always gives 
the global minimum of the expectation value of the Hamiltonian and we will use this and 
only look for the total ground state energy and charge density.  
     As a final remark it must be mentioned that this approach will not be unique, but that 
there will still remain one contribution to the total energy that can not be expressed in 
known quantities. Instead, this energy term which models the exchange and correlation 
energy of the electrons has to be approximated by educated guessing (see 1.1.1). 
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1.1.3   Defining density functionals 

In order to set up the equations which are to be solved to get the total ground state 
electron density n(r) and energy E, we have to make some definitions. First, a functional 
F[f] is mathematically defined as a rule which assigns a numerical value to an input 
function, where F is the functional and f the input function. 
Next we define the functional derivative �F/�n(r), here already as an example with n(r) 
as input: 
 

(1.1) 
 
Using these definitions the problem of a many-body Hamiltonian for electrons in an 
external potential can now be rewritten (where we omit the spin for convenience), using 
atomic units. 

 
(1.2) 

 
By setting up this N-electron Hamiltonian we implicitly used the Born-Oppenheimer 

approximation, therefore the nuclei contribute only as a source of extV̂  and the last 

contribution results from the self-interaction of the electrons.  

The ground state of Ĥ  is then given by the minimization of its expectation value, 
 

(1.3) 
 
where � is the many-particle wavefunction.  
     Now it is useful to define the functional F[n] 
 

(1.4) 
 
where the minimization is over all � that result in the given density n. Realizing that the 
expectation value of the external potential depends only on n, but not on �, we get: 
 

(1.5) 
 
The density we get from this minimization process is the desired ground state density and 

it can also be proven that there exist unambiguous pairs of extV̂ and n(r). That means that 

for each n(r) there exists one unique extV̂  and vice versa [1]. The only other existing 

constraint is a fixed number of particles, which means: 
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(1.6) 

 
     To split F[n] further up, we first find the wavefunction which minimizes the 

expectation value of T̂ , by using the functional Ts[n], 
 

(1.7) 
 
and introduce a functional U[n] which represents the classical electrostatic self-
interaction energy of the charge density : 
 

(1.8) 
 

For a given charge density, extV̂ , Ts[n] and U[n] can be evaluated without making any 

additional assumptions, but in order to get the correct energy we have to add a functional 
which contains all the contributions we omitted in those three terms � Exc[n]. 
Formally, Exc[n] can be defined in the following way : 
 

(1.9) 
 
Furthermore we now look at the exchange and correlation parts separately: 
 

(1.10) 
 
 

(1.11) 
 
It is obvious, that Ec�0, because the first part of it actually minimizes the expectation 
value. In Hartree-Fock theory (HF) the exchange energy is treated exactly, whereas 
correlation is omitted, i.e. the HF total energy only represents an upper bound. 
     As already mentioned in the previous section, the major difficulty in DFT is to find a 
functional, which models Exc[n] as well as possible. The most basic approach is to 
calculate Exc per unit density for a homogeneous electron gas (LDA), which can be done 
analytically for the exchange and well approximated for the correlation, and then simply 
express Exc[n] as: 
 

(1.12) 
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where exc(n) is the energy density of the homogeneous electron gas with constant electron 
density n. All those facts imply that this approximation is especially good for slowly 
varying densities. As a next step in refining this functional one normally introduces a 

functional that not only depends on n, but also on �n. All functionals of this type are 
labelled GGA, as already mentioned. They are currently used in most applications, 
because they find a good balance between computer time and accuracy.  
 

1.1.4   The Kohn-Sham equations 

After we have shown how to formally reduce the problem to a minimization in n(r), it is 
time to take the final step and derive the equations we use to perform this process.  
     We start by imagining n(r) made up of N singly occupied orbitals: 
 

(1.13) 
 
Next, the fact is used that the variational principle can be applied to the total energy 
functional after we used the method of Lagrange multipliers, i.e.: 
 

(1.14) 
 
 

(1.15) 
 
For the different i, this leads to a set of effective single particle equations, the so-called 
Kohn-Sham equations: 
 

(1.16) 
 
The four contributing terms in the operator on the left-hand side of (1.16) are just the 
functional derivatives of the corresponding functionals in (1.15). These equations 
together with (1.13) are all that is needed for getting the desired results. They simply 
have to be iterated until self-consistency is reached. However, a few remarks are 
necessary to explain the use and implementation of these equations.  
     Strictly speaking it is not allowed to give physical meaning to the functions �i and the 
Kohn-Sham energy eigenvalues �i. Only the total electron density has a counterpart in 
reality. Furthermore, the total energy of the system is not the sum of the �i, but (1.15), 
which (using the �i) can be rewritten as: 
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(1.17) 

 
     In addition to that we have the energy contributions from the nuclear repulsion, which 
are essential if we want to calculate the vibrational frequencies of a system. Furthermore, 
it can be seen that we can calculate an infinite number of eigenfunctions, but it should be 
clear that only the N lowest lying ones are occupied. In fact, only those are used as new 
input for the next iteration. This means that if we would occupy one of the energetically 
higher levels instead of one which is normally occupied after self-consistency is reached, 
the equations would become inconsistent again. After that, we would again get the same 
ground state after some iterations. A closing remark is also due here regarding the 
iteration process. Often instabilities will be found if we use only the new �i as input for 
n(r). Instead in most practical applications a linear combination of the previous few 
results is used. 
 
 
 

1.2   The NRLmol computer code 
 
Having discussed the ideas and procedures that are applied in DFT in general, the next 
section presents the implementation of DFT used in this work: The NRLmol computer 
code. It was developed by M. Pederson et al. [4-10] and is freely available for non-profit 
use. The present subchapter 1.2 will mainly be a summary of references [4,5,8] and gives 
an overview of the properties and structure of NRLmol. 
 

1.2.1   Characteristics and features 

Since NRLmol is completely based on DFT, the basic processes involved have already 
been explained in 1.1. Nevertheless, there still is some variety among the different 
implementations that are currently used in the DFT-community. For example it has to be 
decided whether all electrons should be included in the formalism or whether 
pseudopotentials are to be used and only the outer electrons of each atom are treated with 
DFT. In NRLmol all-electron computations are the default and have consistently been 
used throughout this work, but there also exists the possibility to use pseudopotentials. 
     Other important features are the full exploitation of the symmetry point group of the 
molecule and the use of a special integration mesh. Both features contribute to lowering 
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the computation cost and we will discuss the method of finding an appropriate integration 
mesh in 1.2.2. Furthermore the electronic Kohn-Sham orbitals are expanded in a 
Gaussian basis set and the whole system is accommodated in a 3-dimensional box. This 
box is divided by the integration mesh and is large enough that the electron density 
outside the box is zero. 
     All the previously mentioned facts now describe the process of finding the 
energetically most favourable electron density for a given set of nuclear coordinates. To 
complete the process, we also have to find the ground state configuration of the nuclei. 
For this purpose NRLmol not only computes the total energy for a certain configuration, 
but also the forces on all nuclei, by making total derivatives of the total energy. These are 
made up of the “classical” Hellmann-Feynman forces (1.18) plus the Pulay correction 
which includes all the quantum terms. 
 

(1.18) 

 
With this information a new guess for the nuclear coordinates is made, until the forces 
fulfill the given convergence criterion. 
     Using this program, we can calculate the ground-state geometry, the total energy as 
well as the single Kohn-Sham energy levels and the electronic densities. In addition spins 
can be included and LDA as well as GGA exchange-correlation functionals can be 
chosen. After having iterated until the ionic forces are converged, the additional program 
‘specsym’ can be used to calculate the vibrational frequencies, intensities and Raman or 
infrared (IR) activities, as well as the electronic and vibrational polarizability tensor (see 
1.2.3).  
 

1.2.2   The variational mesh 

The main computational effort reduces to the integration of functions in the box. Since 
fast Fourier transforms are unacceptably slow in finite systems, the integration has to be 
done by dividing the box into points and volume elements, where the functions are 
evaluated. The standard procedure is to choose a subset of a complete set of basis 
functions and find points and volume elements, so that the integrals over those functions 
are reproduced exactly. On the other hand, NLRmol uses meshes that are more 
computationally demanding to set up, but improve the accuracy considerably. Therefore 
the effort of setting up the mesh pays off (�equal to one full electron density optimization 
for given nuclear positions), since later on a large number of iterations will be needed 
until the nuclear positions are converged and computer time is saved during each of them.  
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     As first step to set up the mesh, space is divided into three different types of regions: 
atomic spheres, interstitial parallelepipeds and excluded cube regions (for details see [4]). 
For each of these regions slightly different techniques are applied, but the most important 
part is the introduction of a continuous transformation of one-dimensional Gaussian 
quadrature (GQ) meshes. These transformed meshes can be varied continuously, to 
reproduce a wide range of test integrals accurately. By using them, one gets an 
exponential dependence of the accuracy on the number of mesh points, which implies 
that extremely high accuracy is possible, in principle arbitrarily accurate. In addition, 
fewer mesh points are required to reach the same level of accuracy (factor of 2 compared 
to normal GQ meshes and 10 for plane-wave meshes). This results in savings of 
computer time during the iterations.   
 

1.2.3   Vibrations and Polarizabilities 

With the forces on the ions converged to zero, the additional program ‘specsym’ can be 
used to make calculations on the vibrational frequencies, their intensities and activities, as 
well as the polarizabilities. These properties are computed by performing a set of 
calculations where the ground state configuration is either disturbed by an applied electric 
field, or one of the nuclear coordinates is a little bit displaced. This process is greatly 
simplified by making use of the point group symmetries of the cluster.  
     It is important to mention that this enterprise is not affected by electron tunnelling due 
to the constant electric field. This can be understood in the following way: Since we work 
in a box, there is no difference between an applied field of great wavelength and the 
constant field. In experiments, tunnelling is normally also not observed because the 
observation times are shorter than the time required for electrons to decay to infinity by 
tunnelling. 
     Although getting the frequencies of the vibrational modes and the electronic 
polarizability is rather basic, the intensities are more delicate. Especially intensities of the 
Raman-active vibrations are hard, since they depend on a third-order derivative of the 
total energy, whereas those of the infrared (IR) modes only depend on a second order 
one. Therefore the agreement with experiment is in general better for the IR modes, but it 
is essential to use GGA functionals, since the error becomes substantially higher for LDA 
functionals. Summarizing, the standard deviations can approximately be estimated to be 
about 50%, strongly depending on basis set size. This estimate is of course not very 
exact, but can at least give a basic feeling for the quality of the results. 
     In the newest version of ‘specsym’ (written recently by M. Pederson motivated by 
observations made during this research), the output also contains the vibrational part of 
the polarizability, which is computed by using the dynamical charges and the vibrational 
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frequencies of the molecule. For the diatomic molecule this formula is discussed in detail 
in 2.3.1., and the general formula is given by (2.58).  
 
 
 

1.3   Motivation and thesis goals 
 
Since all we discussed so far was DFT and its implementation, it is already clear what the 
main content of this thesis will be. However, when this project was started, the intentions 
were rather going the other way round: Having a short chapter on NRLmol calculations, 
including a discussion of the results, then moving on to working out a classical model, 
fitted to the NRLmol results, and a rather thorough study of small NaF clusters. The 
motivation was that classical models do fairly well on crystal structures and that a simple 
model, which at least modestly accurate accounts for all the important features, would be 
highly welcome.  
     Whereas ab initio methods can convince because of their excellent results, they do not 
provide models that help to visualize or get an intuitive feeling for the processes 
involved.  Therefore, our aim was to close this gap and provide a more intuitive model. In 
the following, the objectives and choices for such models are discussed.  
     With ab initio methods at a fairly advanced state, it is possible to close a gap between 
experiment and theory. Since the predictive powers of DFT are proven by testing them 
versus experimental results on accessible systems, the stage is set to do “computer 
experiments” on non-accessible systems. Real experiments are of course of higher 
validity. Nevertheless, it is much better to do calculations, than having no way to get any 
information on these systems. Especially when using the output to parameterize classical 
models, it is perfectly consistent to use ab initio results instead of experimental numbers.  
     We chose to study Sodium-Fluoride clusters, since classical models proved to be 
especially easy and useful for Alkali-Halide systems. Furthermore there exists a rather 
broad range of experimental results available for small molecules of this type.  
     Our objective was to use quantum mechanics to examine the evolution of the cluster 
properties as size increases, and also to make a classical model for molecular dynamics 
simulations on medium-sized systems. Since it proved that quantum effects are too 
important and diverse, the latter goal had to be modified during the course of this work.  
     The outcome is a thorough DFT study of NaF systems in chapter 2, where we try to 
illuminate the basic reasons for the calculated structures and their properties, and then a 
short discussion of classical models in chapter 3. 
   



 10 

Chapter 2    

A study of small Sodium-Fluoride 

clusters with DFT 

 
 
 
 

2.1   Introductory remarks 
 
In the present chapter we report the results of computations performed with NRLmol. We 
start with a study of the four important single-nuclei cases (Na, Na+, F, F-), then go on to 
NaF and finally to larger clusters. In order to make full use of the results it is necessary 
that we first illustrate the relation between the computed values and their real physical 
meaning. 
 
Geometric parameters, i.e. positions of the nuclei: 
 

As mentioned earlier, all DFT results are for the ground state of the system. On the other 
hand, experimental techniques might require higher temperatures (e.g. for gas phase 
experiments of NaF). Then the experimental bond length is higher due to anharmonic 
vibrations of the molecule, and corrections are necessary [11]. In this work all cited 
experimental results are corrected so as to be directly comparable to the DFT numbers, 
unless stated otherwise. 
 
Polarizabilities: 
 

We get the polarizability matrixα̂  from DFT by applying an external electric field F (F, 
to avoid confusion with the energies) and looking at the change of the dipole moment � 
of the system. The coefficients of the linear term in F are then the elements of the tensor: 
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                                                                                                                                        (2.1) 
 
For the considered systems we distinguish the purely electronic �e from the total 
polarizability �tot. In the first case we keep the positions of the nuclei fixed while 
applying the field (experimentally, this corresponds to high frequency electric fields), 
whereas in the second case we let them relax in the field.      
     Another important result comes from quantum mechanical perturbation theory and 
will be used to interpret the DFT results. With the unperturbed many-particle 
Hamiltonian H of the electronic system and its non-degenerate eigenvalues En

(0) with 
eigenfunctions |n(0)�, where n= 0 represents the ground state, we get the electronic 
polarizability matrix in first order approximation. It only depends on the dipole transition 
elements between all other states and the ground state and their corresponding energy 
differences.  
     The field F creates a perturbation term V in the Hamiltonian: 
 

(2.2) 
 
The second sum goes over all electrons. If we wanted to get the total polarizability we 
additionally would have to take account of the core motion. Now we introduce the 
notation �k(0)|A|n(0)�= �A�kn and use the first order perturbed wavefunctions |n(1)�, 
 
  (2.3) 
 
to compute the electronic dipole moment � along direction xi. 
 

(2.4) 
 
By using (2.1) we get the desired expression for the polarizability matrix elements, here 
with n= 0 for a system which is in the electronic ground state: 
 
                                       (2.5) 
 
     Special care has to be taken when comparing the so-called free ion results with 
experiment, as many experimental values are obtained by refraction experiments on 
crystals and by making several assumptions, which make it doubtful whether this value 
corresponds to the real free ion. We will come back to that topic when discussing the free 
ion polarizabilities. 
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Vibrational frequencies: 
 

NRLmol computes the force constants of the system by small displacements of the 
nuclei. With that information the eigenvalue equation for the vibrational frequencies can 
be solved. In addition information about the infrared (IR) and Raman-activity of every 
mode is gained. We can also use group theory to get information about the geometrical 
shape of those modes [12].  
 
 
 

2.2   The single nuclei cases Na, Na+, F, F - 

 

2.2.1   Energies 

The purpose of starting with the simplest systems is also to get a feeling for the different 
options in DFT. We will compare the effect of using different exchange-correlation 
functionals and of including spin effects into the computations. Spins are always 
important in cases where at least one orbital is only singly occupied, as the other 
electrons will then feel the uncompensated magnetic moment of this electron. In the 
present case this means we have to use spin-density for the two neutral atoms Na and F.  
 

TABLE 2.1:  
NRLmol ground state energies in Hartrees with respect to free electrons and 
nuclei 

 Na Na+ F F- 

GGA without spin � -162.162 -161.973 -99.649 -99.804 

GGA with spin � -162.170 -161.973 -99.664 -99.804 

LDA with spin � -161.443 -161.246 -99.111 -99.259 

 
 
As we can see in Table 2.1 the inclusion of spins does not make a difference for the ionic 
cases. This has the consequence that it is essential to include the spins when computing 
ionization energies or electron affinities as can be seen in Table 2.2. We also use those 
energies to better compare the differences of the two Exc-functionals. The total energies 
cited in those tables are in relation to free electrons and nuclei. In contrast to the energies 
of the single particle DFT energy levels, they are theoretically fully justified and can be 
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compared to experiment. Accordingly we get the ionization energies by taking the 
difference between two separate calculations, one on the neutral atom and one on the ion, 
and not by simply taking the HOMO energy of the neutral atom. 
 

TABLE 2.2:  
Ionization energy and electron affinity in eV with NRLmol  

 GGA (no �) GGA (�) LDA (�) Experiment [13] 

Na ionization energy 5.14 5.35 5.36 5.14 

F electron affinity -4.21 -3.81 -4.02 -3.40 

 
 

2.2.2   Polarizabilities 

First we want to compare the polarizabilities with and without spins and also for the 
different functionals to improve our estimation of the differences arising from our choice. 
Whenever we compute them, we use sufficiently weak electric fields in order that, in the 
dipole moment, only the linear term in the E-field is important. As already mentioned in 
the introduction, the experimental values for the ions do not correspond to what was 
computed here. Experimentally one merely gets the polarizability for one formula unit of 
the crystal by doing refraction experiments upon it and then using the Clausius-Mossotti 
relation: 
  

(2.6) 
 
Applying high-frequency fields, we get the electronic polarizability from the dielectric 
constant. Then the assumption is made that this result equals the sum of the electronic 
polarizabilities of the two ions [14]. This method misses two important points: 
1)  The ionization in the crystal might not be perfect, which means that it might make      
      sense to assign non-integer charges to the ions, corresponding to hybrid-orbitals    
      shared by multiple ions. As a consequence � might change drastically from free ion   
      values.  
2)  The general form of the orbitals and their energies might have changed. From the QM 
      expression for � we can see that this results in differences from the free ion value. 
This does not mean that the experimental results are not useful, we simply propose to 
handle them with more care and not to designate them as free ion polarizabilities. 
     For the neutral atoms the experiment truly measures � for the gas phase and therefore 
directly corresponds to our results. This technique uses an atom interferometer to 
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measure the phase shift in atomic beams induced by the quadratic Stark effect. The error 
bars in those experiments are very small, but we only have results for free Na [15] and 
not for F. 
 

TABLE 2.3:  
Polarizabilities � of the single nuclei in 10-24 cm³ 

 Na Na+ F F- Na++F- 

GGA (no �) 22.59 0.144 0.536 1.23  

GGA (�) 23.18 0.144 0.536 1.23 1.37 

LDA (�) 20.71 0.158 0.538 1.22  

experiment 24.11(6)  
[15] 0.37* [14]  0.85* [14] 1.22 

Hartree-Fock perturbation 
theory [16]  0.140  1.40  

* From crystal refraction. There is broad range of values in the literature (e.g. 0.76-0.98 for F-, see [14]). 
We should only take the sum �Na++�F- and compare it to calculations on crystal structures, but not to the 
free ion values in this table! 

 
 
In the present case � reduces to a scalar, because the systems have cubic symmetry. Since 
we do not have more experimental results, the only number which is reliable for 
comparison is the free Na result. Overall we see a physically satisfying tendency that 
DFT results improve if we include spins for systems where it is necessary. Also, as 
generally agreed upon by DFT experts, the errors coming from the Exc-functional 
decrease for GGA compared to LDA. Later in this work we will always use GGA and 
include spins whenever necessary. 
     Now we want to find an explanation for the remarkably high � for Na, which is 
increased by more than a factor of 10², just by adding an electron to Na+. On the other 
hand, the change between F and F- is only a little more than a factor of 2. If we look at 
the QM perturbation expression for � (2.5), it becomes obvious that there are three 
different reasons for changes in �: 
1) Changes in the energy differences of the electron orbitals. As we are adding an 

electron to the system, they will be smaller and this results in an increase of �. This 
effect takes place in both F and Na alike. 

2) Modification of the matrix elements of �. No overall tendency can be seen here, as 
orbitals in general will contract, but not in a unique fashion. Especially the inner 
occupied levels will not contract very much. Therefore no prediction for the change 
of ��� can be made. 

3) The newly occupied level in Na has the effect of deleting terms from the sum in 
(2.5), namely those which had this level as final state in a transition. Equally, it 
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En −=

creates new terms which start from this new orbital. In F we do not get any 
fundamental change, as the new electron in F- occupies the last of the 2p states. This 
deletes the transitions starting at 1s and 2s going to that state, which do not have very 
large dipole moments anyway, and it creates more transitions starting at 2p. Since 
there were already 5 electrons occupying those orbitals we only expect a change by 
approximately a factor of 6/5. For Na things are different. The 3s state which is now 
occupied in contrast to Na+ has a huge dipole transition to the 3p states. If we look at 
the strong Na D-lines in the solar spectrum, we could already have expected this.  

We also want to check this theory with our DFT calculations. In chapter 1 we emphasized 
that we should not give physical meaning to the Kohn-Sham energies and electron 
orbitals. Nevertheless, as we can see from (1.17), most of the error we made cancels if we 
only consider energy differences. Consequently we calculated the contribution of the 3s 
to 3p transition of the Na polarizability in the framework of DFT.  
     That means we calculated ���3s	3p with the Kohn-Sham orbitals and 
E3s	3p. With our 
results ���3s	3p= 2.480 eaB and  
E3s	3p= 0.0784 Hartree, we get a contribution from this 
transition to the total polarizability of �Na,3s	3p= 23.2 10-24 cm³. This supports our 
explanation especially as all other dipole moments were much smaller. It is also 
remarkable that our energy difference is very close to what we get from experiments. A 
comparison shows that our value 
E3s	3p= 2.13 eV reproduces the experimental energy 
of the Sodium D-lines ENa,D= 2.11 eV up to a small error. This and the very good 
reproduction of � is of course not what one can normally expect from DFT. Much more 
important is the information that � is really dominated by one transition alone.  
     A check of the dipole transition elements and their corresponding energies for F gives 
the result that many transitions contribute to � and no single transition dominates.  
     Another interesting question concerns the two isoelectronic ions Na+ and F-. Since 
they both have 10 electrons, their shells with n= 1,2 are fully occupied and all the 
transitions that bring important contributions to � are between states with n= 2 	 n= 3. 
This enables us to make a simple prediction of the ratio of those two polarizabilities. As 
the electrons occupy the same states, we only need to estimate the average change in the 
energy differences and the dipole moments for the important transitions. To estimate the 
energy differences we use the paradigm of the hydrogen atom. First we look at the simple 
result for the energy levels, which we get from QM by using only electrostatic energy: 
 

(2.7) 
 

Instead of using (2.7) to calculate the energy differences we have to take the shielding of 
the core charge by the other electrons into account. The simplest formula that is used to 
model the experimental energies of the L�-lines is exactly what corresponds to our case. 
It is [17]: 
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(2.8) 

 
We have to compare the cases Z= 9 and Z= 11. Accordingly we get a ratio in the energy 
differences of about 5. We can compare this factor of 5 with the energy levels we get 
from DFT. 
 

TABLE 2.4:  
Kohn-Sham energies of ionic orbitals, computed with NRLmol, in Hartree  

 E(2s) E(2p) E(3s) E(3p) 
E(2s	3p) 
E(2p	3s) 

Na+ -2.36 -1.34 -0.266 -0.147 2.09 1.19 

F- -0.596 0.0729 0.399 0.465 1.06 0.326 

 
 
     As can be seen in Table 2.4, this factor is not very exact. Since we only want to make 
a simple estimate, let us choose a factor of 4. Following this �(F-)� 4 k �(Na+), where k 
has to take the ratios of the dipole moments into account. The remaining factor tells us 
that � gets another enhancement in F- from larger dipole moments. Looking at hydrogen 
we can at least qualitatively understand this, since the distances scale with 1/Z² for 
heavier cores. Due to shielding this is of course modified. Nevertheless the Na+ orbitals 
are more compressed and therefore all integrals, including the dipole moments are scaled. 
Fitting k to the polarizabilites we get the following ratio for the dipole moments 
(approximate relation for all states important for the transition): 
 

(2.9) 
 
Later on this approximation will be used for explaining the nonlinearities in �. 
 

2.2.3   Nonlinear induced dipole moments 

So far we only applied small external electric fields, which gives a linear relation 
between the F-field and induced dipole �. This approximation loses its validity as soon as 
higher terms in F become important. Strictly speaking, instead of using (2.1) we should 
start with the more general relation: 

 
(2.10) 
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It becomes obvious that our definition of �, which was the matrix )2(α̂ , has to be 
modified for higher fields. For this reason we define the polarizability of an object in an 
external electric field as the linear coefficient in the expansion series around this very 
field. Thus we get the generalized version of (2.1): 
 
  (2.11) 
 
In the case of molecules it is important to keep in mind that we are dealing with external 
fields, i.e. the internal fields are not considered here. This is crucial because the internal 
fields normally exceed the external ones by multiple orders of magnitude. For simplicity 
of notation let � denote the case when in the limit of Fext	0.  
     Having discussed the theoretical aspect of this phenomenon we will now go on to the 
results of a calculation on the F--ion in an external F-field.   
 

  Fig. 2.1: Dipole moment � of the Fluoride ion in an external field. 
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As can be seen in Fig. 2.1 the behaviour of � becomes in fact nonlinear for fields above 
~10-2 e/a². Accordingly, for truly external fields (which means not created by neighbour-
ing ions), the linear approximation is fully justified here, as 1e/aB²= 5.15.1011 V/m. Fields 
created during experiments are well below the threshold for detecting nonlinearity. Still, 
especially when keeping quasi-classical models in mind, the nonlinear effects become 
important. Looking at the magnified part of the graph in Fig. 2.1 we see the behaviour at 
a field strength equal to that created by a point charge of 1e at a distance d=3.64aB (which 
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� increases at higher fields. 
Linear fit:  
�(0.075)=1.39.10-24cm³ 
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equals the experimental bond length of  NaF). Here � is increased by a factor of 11.2%. It 
has to be remarked, that the purpose of citing � to four digits here is not that we think it is 
that exact. We only want to get good numbers for internally comparing them and getting 
the enhancement with reasonable accuracy.   
 
  (2.12) 
 
This enhancement effect might be relevant when conceiving simplifying models which 
are to be used for chemical calculations, as we will try to do in chapter 3. It should also 
be kept in mind as a phenomenon that always has to be considered when thinking about 
polarizabilities. 
     We did the same calculation for our second ion Na+, and found that the effect is not as 
profound as for F-; only an increase of 0.9%. 
 

(2.13) 
  
     An understanding of this smaller enhancement can again be gotten by looking at 
perturbation theory. First of all we have to realize that for symmetry reasons � has non-
vanishing coefficients only for odd terms in Fext, because �(F) = -�(-F). This means that 
the first variation in � is quadratic in Fext. Accordingly we write for both ions: 
 
  (2.14) 
 
� is often called hyperpolarizability. As a second step the expression in perturbation 
theory that corresponds to � has to be found. �(0) is already given by (2.5), and � can be 
retrieved from 3rd order perturbation theory. Getting the ratio of �(F-)/�(Na+) is all we 
want. This means we do not have to worry about constant prefactors. 
  

(2.15) 
 
Formula (2.15) is what comes from time-independent perturbation theory. The states we 
sum over are the same for both ions, and again the approximation from formulas (2.8) 
and (2.9) is used. Doing this we get a simple estimation: 

 
(2.16a) 

 
From (2.12) and (2.13) we can also get this ratio, with the result: 
 

(2.16b) 
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Of course (2.13) and (2.14) are not exactly the same, but nobody would have expected 
this from such a simple model and the very empirical way of getting the constant in (2.9). 
Nevertheless we can get a qualitative understanding for the much lower enhancement of 
� in the Sodium ion compared to the isoelectronic Fluoride ion. It has to be emphasized 
again, that this explanation can of course make no prediction of the absolute value of � or 
� but gives a qualitative understanding of their ratios because of their equal number of 
electrons. 
 
 
 

2.3   The NaF monomer  
 
We dedicate a separate subchapter to the special case of the diatomic molecule, the 
“monomer” (dimer would then be Na2F2, etc.). There are two reasons for doing that.  
First, it is the only case apart from the bulk crystal where we have an abundance of 
experimental results and thus it provides another thorough check for the NRLmol code. 
Second, we will try to understand it as well as possible, since the monomer is one end of 
the broad range of clusters which ends at the crystal. Doing this we are always 
remembering that we will try to find a quasi-classical model in chapter 3.  
 

TABLE 2.5: 
Summary of the NaF monomer parameters 

 NRLmol Exp. [18] Exp. [19] Theory [20] Theory [21] 

d [aB] 3.69 3.64 3.64 3.64 3.62 

� [e.aB] 3.07 3.21    

][~ 1−cmν  510 536 536 545 541 

�elec., 
 [10-24cm³] 2.39     

�elec., � [10-24cm³] 3.33     

�total, � [10-24cm³] 4.19     

 
 
     Before giving details of the different calculated values, we start with an overview of 
the results in comparison with experiment and other theoretical calculations. A discussion 
is in the subsequent sections. Again, it proved impossible to find experimental data for �. 
This might partly be due to the fact, that in experiments we also get contributions from 
the orientation of the static dipole in an external field, which are not included in the 
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NRLmol result. This statistical Debye-Langevin polarizability �DL only depends on the 
static dipole and the temperature. For small electric fields (and for the usual temperatures 
which are larger than the rotational quantum of energy) it is given by: 
 

(2.17) 
 

In addition the anisotropy of � might be hard to take into account experimentally, since 
we cannot expect to find it in gas phase experiments.  
     On the other hand, the experimental bond length and vibrational frequency are well 
established and therefore reliable for comparison. The NRLmol value for the bond length 
is about 1.5% higher than experiment, whereas the vibrational frequency lies about 5% 
below the experimental result. 
 

2.3.1   Perturbation theory on diatomic molecules 

As previously, we use quantum mechanical perturbation theory to get a physical 
understanding of NaF. The theoretical framework developed here can be applied to any 
diatomic system by just changing the core charges and the number of electrons.  
     Using Born-Oppenheimer approximation, we split the Hamiltonian into an electronic 
Hamiltonian He and a Hamiltonian for the cores Hc. He, which contains the positions of 
the cores only as parameters, will be solved with DFT. The other Hamiltonian Hc will 
then be solved classically. It involves the electrons through their total energy, which 
enters Hc as a function of core positions only. 
 

Fig. 2.2: Schematic depiction of the NaF monomer 
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Fig. 2.2 defines the coordinate system and the bond length d. Finally we write down the 
two Hamiltonians: 
 

(2.18) 
 
 

(2.19) 
 
We emphasize again the general procedure. After solving (2.18) we look classically for 
the minimum of (2.19), which gives the total energy, the bond length and the electron 
density via (2.18). 
     The physically interesting effects are now the application of an electric field and a 
variation in the bond length. Of course the first effect will presumably create the second 
one and it will be worth knowing in which way. For simplicity let us start with a mere 
variation of the bond length. We now denote the equilibrium bond length with deq and 
look at small variations 
d of the Na x-coordinate. Since the total energy has no linear 
change in 
d, but only a quadratic one, we Taylor-expand up to second order. This also 
gives interesting information about the linear terms. 
 
 

 
 
 

 
 
 

(2.20) 
 
That implies for the first order:  
 

(2.21) 
 

Because x averaged over all electrons is less than deq, �He1�00 has the same sign as 
d. 
Thus for increased bond length the electronic energy also increases and vice versa. This 
first order effect has to be cancelled exactly by a change in the core-core repulsive 
energy, since the expansion is around the energy minimum.  
 

(2.22) 
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Consequently we arrive at the following equation: 
 

(2.23) 
 

Finally the harmonic expansion of the total energy can be written in the following way: 
 

(2.24) 
 

Here it is essential to realize that there are two separate expansions. The first one is in the 
electronic Hamiltonian for small 
d and the second one is the quantum mechanical 
perturbation theory. As a result, there are two terms in (2.24) originating from the 
electronic energy. 
     Related to the displacement of atoms is the concept of dynamical charges as explained 
in [22]. This question arises when one formally wants to assign charges to individual 
atoms in compound systems. One way of doing this, which always retains some 
arbitrariness, is to assign static charges in molecules. Following this concept a boundary 
has to be drawn and electrons or electron densities have to be distributed amongst the 
atoms. For our case of the monomer we use the following simple definition for the static 
charge Z: 

 
(2.25) 

  
In order to have a transferable definition the unambiguous concept of the dynamical 
charge Z* is introduced. It is defined via the change of the dipole moment � with a 
variation of the atomic positions. For the case of the diatomic molecule we get: 
 

(2.26) 
 
It differs from the static charge by an additional term which takes account of the change 
of Z with bond length. Another important fact is that our definition of Z* is for zero 
external electric field. Consequently that has to be taken into account when making 
comparisons, as experimentally one achieves a change of bond length by applying an F-
field. For completeness and further use, we also write the corresponding quantum 
mechanical expressions for (2.25) and (2.26) at d= deq, by using the eigenvector 
definitions of (2.19). 
 

(2.27) 
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(2.28) 

 
The definition of the electronic dipole operator is the same as in (2.2). 
     Let us now look at the effects of an electric field. Keeping the ions fixed, we can get 
the electronic polarizabilities according to (2.5). By symmetry, the off-diagonal elements 
are all zero and �xx��yy=�zz. Of course the most interesting case is a field in x-direction, 
since the bond length will change if the nuclei relax. This is the first effect we want to 
look at. The change in the electronic Hamiltonian is now a function of 
d and Fx.  

 
(2.29) 

 
This means that the change in the core Hamiltonian Hc becomes:  
 

(2.30) 
 
After writing the whole Hamiltonian, we again want a formula like (2.24) for the total 
energy. Wishing to expand to second order, terms in 
d and Fx  are treated as same order. 
Then we can find the new minimum of the total energy as a function of 
d. This way we 
also get the desired relation 
d(Fx). Before doing that we have to evaluate the expectation 
value in (2.30): 
 

(2.31) 
 
The last term still needs to be simplified, but it can be seen that it can be re-expressed 
using the dynamical charge Z* and the electronic polarizability �xx. 
 

(2.32) 
 
Now we have to collect the terms in formulas (2.30)-(2.32). Two of them cancel 
according to (2.23), and we will again use our definition of � from (2.24). 
 

(2.33) 
  
The second term in this expression is exactly the dipole energy, which means the term in 
the parenthesis is the total dipole moment �tot of the unperturbed monomer. To find the 
new equilibrium distance with F-field, we now differentiate with respect to 
d and set the 
result equal to zero: 
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(2.34) 

 
     With the new equilibrium bond length from (2.34) we get the ground state energy of 
the molecule depending only on the electric field. 
 

(2.35) 
 
Last but not least an expression for the total polarizability �tot can be found.  
 

(2.36) 
 
As could have been anticipated, �tot equals the purely electronic polarizability plus some 
additional factor coming from the movement of the cores, the vibrational polarizability. 
Remarkably, this additional factor is very simple when using the concept of dynamical 
charges. Namely, it is proportional to (Z*)², which originates in the direct proportionality 
of 
d and Z*. We also observe that everything is consistent up to second order, since it 
can be seen that the coefficient of Fx² in the total energy (2.35) is exactly ½ �tot, which is 
exactly what we would have presumed right from the start. 
     In the end we found some interesting equations which relate the values we are about to 
compute. They will provide a very valuable check for future computations and can also 
be used for other diatomic molecules.  
     On the basis of this theoretical framework we move on to the discussion of our 
NRLmol results. 
  

2.3.2   Energy curve and vibration 

Before looking at the energy curve depending on separation distance d, we bring back to 
mind that we are using GGA-functionals and include the electronic spins. For the present 
case the inclusion of spins presents two different options. What we expect to get is a 
nonmagnetic state with 10 up and 10 down spins, which doubly occupy the lowest lying 
orbitals. In principle one can alternatively get a paramagnetic state which has 11 up and 
only 9 down electrons. Since this state is energetically less favourable, the electrons have 
to be forced into that spin configuration, but with that accomplished we can also get the 
energy curve for this spin occupancy. 
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  Fig. 2.3: Energy curve for the NaF nonmagnetic and paramagnetic state 
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     Very clearly it can be seen that the nonmagnetic case is much lower in energy. The 
minimum lies at a distance of d = 3.69 aB. At this distance the total energy is:  
 

(2.37) 
 
And the paramagnetic state is higher by 5.78 eV. At this distance the paramagnetic state 
is even higher than the sum of the free atom energies, which can be looked up in the 
second row of Table 2.1.  
     From Figure 2.3 we also get information about the dissociation energy of the 
monomer: 
 

(2.38) 
 
Comparing the dissociation energy with experiment [23] shows that the DFT result is 
very close, lying within a 5% error-range. 
     The next interesting energy is the first electronic excitation. Instead of just taking the 
energy differences between the HOMO and LUMO we do two different computations. 
The first is just the regular one and in the second we force the highest lying electron to 
occupy the LUMO and leave the HOMO empty. At the end we take the differences in the 
total energy between those two results to get the first electronic excitation energy. Table 
2.6 shows the result and also compares it to the HOMO-LUMO energy difference. 
 

Sum of free  
atom energies 

nonmagnetic 
(10�,10�) 

para (11�,9�) 
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TABLE 2.6: 
Different ways to estimate the first electronic excitation energy 

 E(LUMO)-E(HOMO) By forced occupancy Experiment [24] 

E1 in eV 3.01 5.57 5.7 

 
 
Looking at Table 2.6 we see that one needs to do the two separate calculations; the error 
with the other method is gigantic, while the forced occupancy method produces a result 
very close to experiment. 
     Another aspect to look at is the comparison of the perturbation theory results in the 
last subchapter with direct numerical computations by NRLmol. Using Figure 2.3 it is 
possible to obtain values for the previously defined variables �, Z and Z*. For this 
purpose we compute the total energy and the dipole moment for a set of distances around 
the equilibrium distance. What can immediately be writen down with the information in 
Table 2.5 is the static charge Z = 0.832 e. 
 

  Fig. 2.4: Quadratic least-square fit of the NaF monomer energy around deq to obtain �  

y =  - 262,0266 + (1/2) * 0,1060 * (x - 3,689)²
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From Figure 2.4 we get �, which is just the coefficient in front of the quadratic term and 
from Figure 2.5 Z*, which is the linear coefficient of the dipole moment. 
 

(2.39) 
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  Fig. 2.5: Linear least-square fit of the NaF dipole moment around deq 
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With this result for � we can not only check the result for the total polarizability, but also 
look at the vibrational frequency f. In harmonic approximation, which should be 
reasonably good for the lowest lying states, the frequency is given by: 
 

(2.40) 
 
In the previous formula mr is the reduced mass, and we also have to relate energies in 
Hartrees to the atomic mass unit m0 and one second s. We get the following conversion 
factor: 
 

(2.41) 
 
Using this we write the energy in wavenumbers cf /~ =ν and compare it to Table 2.5. 

The result of 1519~ −= cmν  shows that everything is consistent. The essential part about 

formula (2.40) is that it provides a way to derive � from experiments on molecular 
vibrations. 
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2.3.3   Polarizabilities 

When thinking about the polarizability of the NaF monomer, some questions immediately 
pop up: 

� Why is � enhanced in comparison to the sum of the free ion polarizabilities?  
� What is the reason for a bigger electronic � along the molecular axis than 

perpendicular to it?  
� How well does the perturbation prediction for the total polarizability compare 

with a separate calculation where the molecule relaxes in an external field? 
 
     We will discuss and try to explain these problems by using the LCAO bonding 
picture. This means we will visualize the molecular orbitals (which strictly speaking do 
not even exist, as only the total wavefunction is theoretically exactly justified) as a linear 
combination of atomic orbitals. Again we are not aiming for a quantitative understanding, 
but for the underlying physical mechanisms.  
     Let us start with the perpendicular electronic polarizability �
. The DFT result is �
= 
2.39 10-24 cm³, whereas �F- +�Na+ = 1.37 10-24 cm³. The comparison with the sum of the 
free ion energies only makes sense if we can really assume the atoms to be fully ionized. 
NaF is definitely called an ionic compound, especially in the crystalline form. 
     On the other hand, we have seen in Table 2.5 that the charges we assign are about 
20% less than �1. Therefore let us try to understand the electronic structure in the LCAO 
picture. For the free atoms the HOMO in Na is a 3s orbital, represented by the notation 
|Na,3s�. We remember that the high atomic � in the Na atom originated from transitions 
starting at this orbital. In free F, five of the six 2p states are occupied. This implies that 
those six electrons have to be redistributed in the NaF molecule. 
     For the monomer we use the following simple model: The |F,2py� and |F,2pz� states 
remain unchanged and are both doubly occupied. Thus the remaining task is to find an 
orbital for the last electron pair. If there were full ionization, we could just say it occupies 
the |F,2px� state. Instead we now create two hybrid orbitals out of the |Na,3s� and the 
|F,2pz� states, where the original atomic orbitals are assumed orthonormal. Symmetry 
requires that py or pz states can never be mixed with s states when making LCAO-
orbitals. 
 

 
(2.42) 

 
� is a parameter which we fit, so that it reproduces the static charge of the molecule, 
which is defined in (2.25). We always set � < 2-0.5, so that |�-� is lower in energy and 
therefore doubly occupied, whereas |�+� is our LUMO state. This gives the relation:  
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(2.43) 

 
In this simple model the explanation for the increased � of NaF compared to the free ions 
is that again the dipole transition between the hybrid state |�-� and the Sodium p-states is 
very large. To verify this hypothesis the following test is made: 
     First we evaluate the transition element |��-|�|Na,3p�|² = (1-Z) |� Na,3s|�|Na,3p�|². 
Since this last dipole transition is very dominant in Na, this is essentially the contribution 
to � in NaF which results from transitions on the Sodium atom. For that purpose we 
formally split the electronic polarizability into two contributions, one from Na transitions 
and one from F transitions. 

 
(2.44) 

 
Now we want to re-express the Sodium contribution only in terms of �Na and the 
differences in energy levels of the participating electron states. As we do internal 
comparisons and only want to get a qualitative understanding the Kohn-Sham energies of 
those levels are used. This results in the following formula: 
 

(2.45) 
 
In (2.45) the very small contribution from �Na+ is neglected. The next task, before we will 
give verification for this model, is to explain the Fluoride part. Since the electron 
configuration on the F nucleus is not much changed, we approximately expect this part to 
be independent of the static charge. Of course it will be different from the free ion �, but 
constant.  
     Finally a test  has to be made with this simple model. For that purpose we artificially 
change the bond length and compute �
, the static charge and the Kohn-Sham energies. 
Additionally we need the energies of the Sodium atom orbitals for use in (2.45). Then 
(2.45) is evaluated for some given bond length d and subtracted from the DFT �
 to get 
the Fluoride contribution according to (2.44). If the model captures the important 
features, this result should be approximately constant.  
     Table 2.7 shows that this extremely simple model provides an explanation for the 
observed phenomenon. The cited polarizability is somewhat smaller than our previous 
value, because a smaller basis set was used for the calculations of Table 2.7. 
     Summarizing, the main reason for an increased polarizability in NaF is the non-perfect 
ionization. This has the effect that contributions from the very large dipole transition 
,which is also responsible for the high � in Na, increase the polarizability. 
 



 30 

TABLE 2.7: 
LCAO model for the NaF perpendicular electronic polarizability depending on the 
bond length d 

d in aB 
³10

)(
24 cm

inDFT
−

⊥α
  

de ⋅
− µ

1  E(NaF,�-)  
in hartree 

E(NaF,Na3p) 
in hartree  ³10

~

24 cm

inNa

−

α
 

see (2.45) 
³10

~

24 cm

inF

−

α
 

see (2.44) 

3,690 2,155 0,169 -0,195 0,002 1,55 0,61 

4,200 2,395 0,175 -0,186 -0,005 1,75 0,65 

4,700 2,678 0,181 -0,175 -0,012 2,02 0,66 

6,000 3,722 0,219 -0,158 -0,030 3,1 0,62 

  8,000 * 5,896 0,316 -0,155 -0,048 5,38 0,52 

* Results are less reliable for larger separation distances, since it becomes harder to converge the   
   energies. The reason is that the electron density can fluctuate over a large range without resulting in big  
   energy changes. 

 
 
Figure 2.6: DFT electronic orbitals of the NaF molecule: HOMO & HOMO-1 are  
                    degenerate Fluoride �-states, HOMO-2 is |�-� (the third Fluoride �-state    
                     mixed with a small |Na,3s� contribution) and LUMO is |�+� 
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Figure 2.6 and all other graphics of molecules were made with the program Molekel 
[25,26]. 
     Since Z seems to be the most influential factor on �, an additional test can be made. 
Let us apply an external electric field at deq, that results exactly in Z=1. Then �
 should 
decrease and be much closer to the sum of the free ion values. 
 

(2.46) 
 
Indeed it decreased and is now only 20% higher than the free ion values, but we also saw 
in 2.2.3 that �F- increases with the applied field. Therefore this result additionally 
supports the model. Taking a look at Figure 2.6, the NRLmol results for some of the 
electronic orbitals are plotted. The states |F,2py� and |F,2pz� correspond to the HOMO and 
HOMO-1, whereas the HOMO-2 is the state |�-� and therefore a little bit lower in energy 
than the other two Fluoride p-states. The planes below the molecule are projection planes 
for the electron density. In the |�-� projection we can even see the shadow coming from 
the |Na,3s� contribution. Finally it can be seen that the LUMO is indeed mainly a |Na,3s� 
state mixed with minor contributions. This is the state |�+�. 
 

  Fig. 2.7: Electronic dipole moment and �� of NaF depending on the external field 
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     The second question we want to answer is concerned with the relation ��>�
. What is 
the difference between those two cases? For the purpose of answering this, again the use 
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of the LCAO picture is helpful. In this model the important feature of the p-orbitals along 
the axis is that they form hybrids with the neighbouring s-orbitals. Namely we get the 
electron states |�-� and |�+�. Also the |Na,3px� and other higher lying orbitals are 
hybridized. This means that the additional transition ��-|�|�+� exists along the axis. 
According to the previous assumption of orthogonality for the atomic orbitals of separate 
atoms, this transition should be zero. But we know that there will be some overlap in the 
region between the nuclei, which will give a non-vanishing contribution and has to be 
included. Furthermore the state |�+� is the LUMO and this means that the energy 
difference is very small, which increases the polarizability from this transition.  
     Finally the third question is the comparison of formula (2.36) with a direct 
computation of �tot. Speaking of a total polarizability only makes sense parallel to the 
molecular axis; therefore no distinguishing is necessary. Putting the results of (2.39) and 
Table 2.5 into (2.36) results in: 
 

(2.47) 
   
Consequently formula (3.36) gives the correct result. This is also an important check, as 
it is hard to stay in the linear region of the induced electronic dipole moments and get a 
shift of the nuclei at the same time. The reason is a very strong nonlinearity in the 
induced electronic dipole moment along the axis (see Figure 2.7).  
     By comparing Figure 2.7 to Figure 2.1 it is obvious that the nonlinearities here are 
much more important. Especially, it seems to be very easy to bring the molecule back to a 
state without dipole moment. All this makes it harder to get �tot, since the nuclei only 
change position when the forces are sufficiently high. Because we are in the minimum, 
the external field cannot be too small, otherwise the nuclei would not move at all! 
 
 
 

2.4   Larger clusters 
 
We now ask which of the larger configurations are worth looking at. One main criterion 
is the usefulness of the results for getting information about how to parameterize quasi-
classical models. In addition, there are aspects of structures that are interesting in their 
own. For example Na2F2, because other research groups already studied it and thus we 
are able to compare, or Na4F4 which has two different configurations (ring & cube) that 
are lying very close in energy. Furthermore the cube is highly symmetric, namely of the 
space group Td, which enables us to easily analyse the vibrational modes and frequencies.  
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2.4.1   The dimer Na2F2 

The ground state configuration of the Na2F2 cluster belongs to the D2h symmetry group. 
As mentioned, the interesting aspect here is that other theoretical and also experimental 
results exist. Looking at the changes from the monomer, the most obvious effect is an 
elongated bond length. We get dNa-F = 3.96aB in the dimer, which is an increase of 7.3% 
compared to the monomer. Furthermore, the molecule is not square, but the two Na 
atoms are closer to each other than the two F atoms. Those two distances are: 
 

(2.48) 
 
This would exactly correspond to a picture 
where we assign effective radii to the ions: 
The Fluoride ion has a larger radius and 
therefore this species is further apart. For 
comparison and notation it is easier to cite the 
bond angle at the Sodium atom instead of 
those two additional distances (see Figure 2.8).  
     We now summarize our results on 
geometry and compare them with paper [20], 
where we find a discussion of the dimer and 
the monomer, including citations of 
experimental results. The authors used 
restricted Hartree-Fock (RHF) and M�ller-
Plesset perturbation theory (MP2) to perform 
their calculations.  
 

TABLE 2.8: 
Comparing Na2F2 experiments with various theoretical results 

 NRLmol RHF [20] MP2  [20] Exp.1 Exp.2 
Dimerization 
energy in eV 

2.40 2.62 2.59 2.57 [27]  

dNa-F in aB 3.96 3.90 3.86 3.93(2) [28] 3.92(2) [29] 

� in ° 94.7 93.1 92.9 95.4(6) [28] 96.0(3.0) [29] 

 
 
The dimerization energy can be obtained by taking the differences in the total energy of 
the dimer and twice the energy of the monomer.  
 

�=94.7° 

Fig. 2.8: Scheme of Na2F2 

Na 

F 
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(2.49) 
 
Since these numbers are very interesting for chemists and experimentally produced by 
them, they are often cited in kcal/mol instead of eV per formula unit. For convenience we 
cite the conversion factor: 
 

(2.50) 
 
Table 2.8 shows that our results for the geometry are of about the same quality as in the 
case of the monomer. Only the dimerization energy seems to be off by more than 5%, but 
then the experimental results are comparatively old and we have no information about the 
experimental error. Furthermore we observe that the RHF calculations also do pretty well 
and for this reason we want to compare our results for the vibrational frequencies with 
the RHF results from [20].  
     Since there are 12 degrees of freedom in this molecule, we get 6 vibrational 
frequencies with NRLmol. These frequencies are sorted according to the irreducible 
representation they belong to. Na2F2 is of the symmetry group D2h which is of order 8 and 
has 8 classes. With this information and the use of the character table of this point group 
we can also get information about the geometrical shape of the vibrations and their IR 
and Raman activity.  
 

 
 
The eight irreducible representations in Table 2.9 can be found with the help of the Great 
Orthogonality Theorem.  

TABLE 2.9:  Character table of the Na2F2 group D2h 

D2h E C2 (z) C2 (y) C2 (x) i �(xy) �(xz) �(yz)    

Ag +1 +1 +1 +1 +1 +1 +1 +1  x², y²,z² 

B1g +1 +1 -1 -1 +1 +1 -1 -1 Rz xy 

B2g +1 -1 +1 -1 +1 -1 +1 -1 Ry xz 

B3g +1 -1 -1 +1 +1 -1 -1 +1 Rx yz 

Au +1 +1 +1 +1 -1 -1 -1 -1    

B1u +1 +1 -1 -1 -1 -1 +1 +1 z  

B2u +1 -1 +1 -1 -1 +1 -1 +1 y  

B3u +1 -1 -1 +1 -1 +1 +1 -1 x  

C12 12 0 -2 -2 0 4 2 2   
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     In addition, there are attached the 
characters of the representation of the 
molecule in Cartesian coordinates, which 
are labeled C12. We use a 12-dimensional 
coordinate vector (Figure 2.9) and the 
corresponding matrices that perform the 
symmetry operations of this group. Thus 
we get the characters of our C12 
representation. This representation can 
now be uniquely expressed as the sum of 
irreducible representations, because those 
are orthogonal. As result we obtain: 
 
 
  (2.51) 
 
     If we now want to get the 6 representations for the vibrational modes, we have to 
subtract those which represent the translations and rotations. They are one set of the B_g 
for rotation and one set of B_u for translation. With this information we can assign the 
vibrational frequencies to the representations and compare them to the RHF results.  
     In addition there are also results by D. Welch computed with the classical ‘shell 
model’ (see subchapter 3.1) and experimental numbers for two of the IR-active modes. 
Furthermore we can find out the geometrical shape of those vibrations, since they are 
bases for their corresponding representation. We summarize the results in Table 2.10 and 
remind the reader, that the Sodium atoms are lying on the x-axis, whereas the z-axis is 
perpendicular to the molecular plane (see Fig. 2.9). 
The RHF frequencies are always increased by 5.5- 8.5 % compared to NRLmol. Since 
this difference seems to be very systematic and already occurred in the monomer (see 
Table 2.5) and because correlation energy is not included in Hartree-Fock theory, part of 
this deviation might well be due to the neglection of correlation. 
     For the classical shell model, it can be observed that despite its comparatively simple 
form it captures most of the frequencies closely. 
     The only experimental check available is for the IR-active vibrations, where the 
results were obtained in absorption with the matrix isolation technique [30]. Due to a 
low-frequency limit of the spectrometer the out-of-plane vibration could not be detected. 
Nevertheless, the other two experimental frequencies show very good agreement with the 
DFT values and in the experimental results it is also observable that they have both about 
the same intensity. In the course of that experiment the monomer frequency was 

Fig. 2.9: Na2F2 12-D coordinates 
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determined to lie at 515 cm-1. This result is also closer to the DFT result than the other 
experimental values we cited in Table 2.5. 
 

TABLE 2.10:  Vibrational frequencies in cm-1 of the Na2F2 molecule 

 Ag Ag B1g B1u B2u B3u 

Shape 

 

 

 

 

 

 

 

 

 

 

 

 

Activity* Raman 
(0.047) 

Raman 
(1) 

Raman 
(0.027) 

IR 
(0.80) 

IR 
(1) 

IR 
(0.98) 

NRLmol 205 377 326 149 373 362 

RHF  
[20] 219 404 350 162 394 383 

Shell 
model 
[31] 

264 360 218 184 324 299 

Exp.[30]    <190 380 363 

RHF/ 
NRLmol 

1.068 1.072 1.074 1.087 1.056 1.058 

*  The numbers in parenthesis relate the intensities. The highest intensities for IR and Raman respectively  
    are set to 1.           
 
 
     We finish our study of the Na2F2 molecule with a discussion of the electronic and 
vibrational polarizability tensor. 
 
 

(2.52) 
 
 
First of all we see that the electronic polarizability is far less than twice the value we get 
for the monomer. The second observation we make is that the anisotropy is also weaker 
than in the monomer. Since we know the crystal behaviour, which has isotropic �, we can 
already see that the smaller structures have a very special behaviour of �. There the direct 
influence of the interplay of atomic orbitals is still very present, which results in the 
anisotropies and unexpectedly large values for �e. For the Na2F2 structure we therefore 
expect slightly larger static charges than in the monomer. This tendency should remain 

� 

� 
� � 
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valid as we go to bigger clusters and finally approach values of �1. Furthermore the 
polarizability should become more and more isotropic while approaching the crystal 
value. 
     Especially the vibrational polarizability has increased very remarkably compared to 
the monomer. Namely the value along the z-direction is huge, which is partly explained 
by the low-frequency vibrational mode along this direction.  
 

2.4.2   The Na4F4 cluster 

We arrive at the last structure to which we will dedicate a separate subchapter, Na4F4. 
What makes it especially worthwhile to take a closer look at, is that there exist two 
different conformations which lie very close in energy, a cube and a ring. The separation 
in energy is so low, that the higher lying structure, the ring, will coexist at a small ratio 
even at room temperature. Our result for the energy difference is 0.75 eV, whereas 
another paper cites a value of 0.34 eV [32]. This paper studies the isomerization 
dynamics of those two different structures, where a factor of more than 2 in the energy 
differences is of course of exponential impact, since we look at statistical occupancy.  
     Both structures are highly symmetric, the cube belonging to the same symmetry group 
as methane, Td. On the other hand the ring also has interesting symmetry properties, 
being of the group D4h. Since we get a total of 18 different vibrational modes, this will 
make it easier to sort them out. Studying the geometry, we can see that the F nuclei in the 
cube are again further out from the center than the Na nuclei. Setting the center of mass 
as origin, we get: 
 

(2.53) 
 
Overall, the cube is very close to a fragment of the crystal, because the bond length is 
4.33 aB, compared to 4.37 aB for the crystal. In the ring the bond length is even shorter 
than in the dimer, since it has more of the features of a chain. The structures together with 
the geometric parameters are depicted in Figure 2.10. 
     Parallel to the dimerization energy of the last subchapter we can compute the 
“quadrimerization energy”:   
 
  (2.54) 
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 Fig. 2.10: Comparing the cube and ring structure of Na4F4 

 
 
 
It is almost three times as big as the dimerization energy, which can be understood by 
visualizing the process in the following way: We start with four monomers and first form 
a dimer out of the first two, getting the dimerization energy. Next we attach the third 
monomer to the dimer, getting approximately the dimerization energy a second time (it 
will be a little bit less!). As a final step we form our cube and get our last energy gain, 
which explains why the quadrumerization energy is bigger by an approximate factor of 3.  
     Another interesting energy is the formation energy, which is the energy obtained per 
formula unit (per monomer), when making a cluster out of free atoms. In the present case 
it is just the dissociation energy of the monomer (2.38) plus one forth of the 
quadrumerization energy. This means that the formation energy will presumably increase 
with the size of the cluster until it reaches its maximum for the crystal structure         
(9.30 eV).    
     Consequently the biggest part can be gotten by forming the monomer, and later on the 
increases become smaller. For the cube the formation energy is 7.01 eV, which should be 
very close to the energy of a pair of corner atoms in the crystal.  
     Having discussed geometry and energies, it remains to take a look at the vibrational 
frequencies and the polarizabilites. Let us start with the vibrations of the cube. Using 
Cartesian coordinates parallel to the version in Fig. 2.9, we get a 24-dimensional vector. 
We label this represention as C24 and attach the characters at the end of the Td character 
table. 

d=3.92aB 

d=4.33aB 

E0 E0+0.75eV 
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As before we can split the C24 representation into irreducible representations: 
 

(2.55) 
 
Since one T1 represents the rotations and one T2 the translations, we know of which 
irreducible representations our vibrations will be. This also gives the information, that 
there exist a total of eight different frequencies, with a total of 18 modes. In principle we 
can now assign the geometrical shape to each vibrational frequency we calculated, as we 
did in Table 2.10 for the dimer. Nevertheless this task would be very tedious, especially 
because the T1 and T2 representations are more complicated.  
     Therefore we only summarize the frequencies and their activities in Table 2.12.  
 

TABLE 2.12:  Vibrational frequencies of the Na4F4 cube 

Frequency in 
cm-1 

151 159 250 253 262 305 313 317 

# of modes 3 2 3 1 2 3 1 3 

Irr. Re-
presentation 

T2 E T1 A1 E T2 A1 T2 

Activity* 
IR 

(0.017) 

Raman 
 (0.014) 

Raman 
(0.007) -- Raman 

(0.20) 
Raman 

(0.028) 

IR 
(0.18) 

Raman 
(0.002) 

Raman 
(1) 

IR 
(1) 

Raman 
(0.004) 

*  The numbers in parenthesis relate the intensities. The highest intensities for IR and Raman respectively  
    are set to 1.           
 
     

TABLE 2.11:  Character table of the cube Na4F4 group Td 

Td E 8 C3 3 C2 6 S4 6 �d   

A1 1 1 1 1 1  x²+y²+z² 

A2 1 1 1 -1 -1   

E 2 -1 2 0 0  
x²-y², 

 2z²-x²-y² 

T1 3 0 -1 1 -1 Rx, Ry, Rz  

T2 3 0 -1 -1 1 x, y, z xy, xz, yz 

C24 24 0 0 0 2   
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     Apparently the vibrational frequencies have become lower in comparison to the dimer 
and especially to the monomer. If we compute the average of all frequencies weighed 
with their number of modes, we get the following result:  
 

(2.56) 
 
     For comparison it is interesting to look 
at a 1-d model. We classically compute 
the vibrational frequencies of chains made 
of N atoms of one atomic species. They 
all have masses m and force constants k. 
We thus get (N-1) different frequencies 
for each chain. Denoting these frequencies 
as fN(1), …, fN(N-1) and their arithmetic 
average as fN, we can re-express all the fN 
as multiples of f2. For N= 3,4 the results 
are very easy, and as going to infinity we 
get the phonon dispersion curve, which 
can be used to compute the average and therefore f�. 
 

(2.57) 
  
     Now we do of course not deal with a 1-d chain of atoms of one species. Nevertheless 
the two atoms are very close in mass (23m0 for Na and 19m0 for F), which implies that 
the splitting between the acoustical and optical branch in 1-d would be very small. This 

means that their average would be very close to 21 f2. Additionally we can also expect 

the average of the transverse branches in 3-d to be of the same size. On the basis of this 
model, we conclude that the force constant decreases in the larger structures, especially 
since the minimum of fi occurs at f�. Otherwise a distinctly higher average of the 
vibrational frequencies would be expected. 
     There also exists a generalization of (2.36) for multi-particle systems (see formula 13 
in [33]). This formula keeps all the essential features of (2.36) and this leads to the 
expectation of an increase in the vibrational polarizability.  
 

(2.58) 
 

m m 

k 
f2 N=2 : 

N=3 : 

.

.

.

f3(1), f3(2) 

Fig. 2.11: Classical vibrations of 1-d chains 
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In (2.58) the sum goes over all vibrational modes (indexed with �). The derivatives of the 
dipole moment components �i, �j are taken with respect to the normal mode coordinates 
of the vibrations.  
     Having studied the vibrations of the cube, we can do the same steps for the ring. The 
huge Character Table of the D4h group can be found in [12]. By using again the C24 
representation and getting its characters corresponding to the D4h symmetry operations, 
we split it into the irreducible representations: 
 

(2.59) 
 
The translations are A2u�Eu and the rotations A2g�Eg. This means we know the 
representations for all 18 vibrational modes. Important to note is that the C2´ axis is 
identical to the x-axis and that the �v plane is perpendicular to the y-axis, i.e. they go 
through two Sodium atoms. The z-axis is perpendicular to the molecular plane. 
 

TABLE 2.13:  Vibrational frequencies of the Na4F4 ring 

Frequency in 
cm-1 

30 40 41 49 97 99 141 

# of modes 1 1 1 1 2 2 1 

Irr. Re-
presentation 

B1g B2g B1u B2u Eg Eu A2u 

Activity* Raman 
(0.011) 

Raman 
(0.001) -- -- Raman 

(0.002) 
IR 

(0.37) 
IR 

(0.99) 

Frequency in 
cm-1 

160 221 281 385 392 460 471 

# of modes 1 1 2 1 1 2 1 

Irr. Re-
presentation 

A1g A1g Eu B2g B1g Eu A2g 

Activity* Raman 
 (0.036) 

Raman 
(1) 

IR 
(0.008) 

Raman 
(0.061) 

Raman 
(0.054) 

IR 
(1) 

-- 

*  The numbers in parenthesis relate the intensities. The highest intensities for IR and Raman respectively  
    are set to 1.           
 
 
     What distinguishes the ring frequencies from the cube is the broader range of values. 
Especially at the low energy end there are multiple vibrations in the ring, but none in the 
cube. This originates from the chain-like structure of the ring and the fact that vibrations 
can occur where the nuclei approach far less for some fixed amplitude than they would 
for any other vibration in the cube. Therefore the average frequency is even less, only 
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211 cm-1. It is interesting to look at the two lowest 
lying vibrations. They both have the same geometrical 
shape, belonging to B1g and B2g. Only the two atomic 
species are exchanged. The lowest lying vibration is 
depicted in Figure 2.12, where we can see that the 
Sodium atoms move exactly along the axes and the 
Fluoride atoms at an angle of ~45°. If we move the 
Sodiums some distance d, the Fluorides move 0.39 d. 
Nevertheless, the neighbouring nuclei will only 
approach or go apart by 0.047 d. This means that the 
effective force constant is reduced by a remarkable 
factor, and that explains the very low frequency of this 
vibrational mode.  
     Finally we present the electronic polarizabilities. For the cube it is a scalar and for the 
ring only the polarizability along the z-axis is different. 

 
  (2.60) 

 
     In the ring the polarizability is lowest out of the molecular plane. That was already the 
case in the dimer and also in the monomer, where the polarizability perpendicular to the 
axis was lower due to additional transitions along the axis. Overall we can see the 
tendency that the polarizability per NaF pair decreases. To get some check for our notion, 
we computed one of the octupole moments for the cube and formally assigned a static 
charge q according to it. Since the x,y,z coordinates of the nuclei of one species all have 
the same absolute value, we make the approach: 
 

(2.61) 
 
     In this formula � denotes the total charge density, i.e. electron density + point charges 
of the nuclei. As result a formal static charge of q = 0.866 e is computed, compared to the 
static charge of 0.831 e in the monomer. This would correspond to a weaker contribution 
of the |Na,3s� atomic orbitals and therefore result in a decreased total polarizability. 
     The next step is to take a look at the vibrational polarizability. As already expected on 
grounds of the decreased vibrational frequencies, there is a big enhancement compared to 
the monomer. For the cube �vib is isotropic and therefore only a scalar.  
     In the monomer we had one vibration along the axis. If we only look at this direction, 
we therefore had one mode per NaF pair. In the Na4F4 cube we have 18 vibrations for 3 
directions of space. This leads to the expectation of an enhancement factor of 6 for the 

Fig. 2.12: Na4F4 ring vibration  
                with f = 30cm-1  

F 

Na 
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vibrational polarizability. In addition, the average of our vibrational frequencies was only 
about half that of the monomer, while the force constant stands in the denominator. This 
implies another increase, especially as low frequency vibrations create very large 
contributions. 
     The result of the calculation agrees with our expectation.  
 

(2.62) 
 
Taking a look at the ring structure, we expect a different result. On grounds of the result 
for the dimer we again predict a large value of �vib out of the molecular plane. 

 
(2.63) 

  
The value out of the plane is indeed about twice that of the dimer, but additionally we 
also get comparably large results in the plane. Going back to our two lowest frequencies 
we see that they both are in the molecular plane. This provides an explanation for the 
result. 
     With the anisotropy becoming less and especially as it is desirable for classical models 
to have isotropic polarizability assigned to all components of a cluster, it also makes 
sense to look at the average value. Additionally this might be more useful for comparison 
with experiment. 
     Another interesting result, especially for comparison with classical models, is the 
induced quadrupole moment in the cube configuration. The definition of the electronic 
quadrupole tensor elements can be found in [34], where Buckingham discusses 
intermolecular forces. 
 

(2.64) 
 
When applying an external field perpendicular to one side of the cube, assigning the field 
in z-direction, we get an induced quadrupole moment in xy-direction. 
 

(2.65) 
 
This induced quadrupole moment can also be computed with other models and therefore 
provides a valuable check. Now we make calculations and express �xy as a function of 
the external field in z-direction �xy(Fz). For zero field this expression vanishes because of 
the symmetry properties of the tetrahedron. For small fields there is a linear relation.  
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  Fig. 2.13: Induced quadrupole moment in the Na4F4 cube 
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From the linear fit in Figure 2.13 we get the quadrupole polarizability. 
  

(2.66) 
 
 

2.4.3   Clusters with more than 10 atoms 

This last part of chapter two presents the results on bigger clusters, where no 
experimental results are 
available. In some cases there 
exist at least other theoretical 
studies, which will be used for 
comparison.  
 
Na6F6 
 

This structure of D2h symmetry is 
the next biggest crystal fragment 
after Na4F4 and has no net dipole 
moment. The bond length 
between the inner four atoms is 
distinctly longer than on the 
outer ones. This will be a general 

Fig. 2.14: Na6F6 geometry with distances in aB 

Na 
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phenomenon in all clusters. The corner atoms are always slightly impressed towards the 
center of the cluster. We also computed the formation energy of that cluster. 
 

(2.67) 
 
     This is only slightly higher than the result for the Na4F4 cube, but when we consider 
that the formation energy of the corner atom pairs should be approximately the same, the 
formation energy of the inner (or edge) pairs is calculated to 7.53 eV, which is already 
much closer to the crystal value.  
 
Na9F9 
 

Consisting of 18 atoms and 
being of C4v symmetry, 
this cluster has a dipole 
moment perpendicular to 
its 3x3 plane, because of 
the uneven number of ions 
in each plane.  
 
       � = 2.01 e aB         (2.68) 
 
This dipole moment is 
only about half that of a 
point-charge model with 
charges of �e, implying 
that the ionization is not 
total. In addition the 
expected rise in the formation energy compared to Na6F6 can be confirmed. 
 

(2.68) 
 
In combination with the results for Na4F4 and Na6F6 this provides a basic estimate for the 
energy of a pair of face atoms to 7.63 eV. 
     We also calculated the polarizability tensors of the Na9F9 cluster. 
 
 
 
 

Fig. 2.15: Na9F9 geometry (3x3x2) with distances in aB 
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(2.69) 
 
 
The last component in both tensors is the one perpendicular to the 3x3 plane. Compared 
to the Na4F4 cube, the ratio �vib/�e is considerably increased and it would be interesting to 
find out at what cluster size this ratio will reach the bulk limit. For the bulk the dielectric 
constants are ��= 1.7 and �0= 5.1 [35]. Comparing those numbers to the bulk limit of the 
polarizabilities would be an interesting topic for further research. 
     Instead of listing all the vibrational frequencies, we plot them together with their 
infrared intensities in Figure 2.16.  
 

Fig. 2.16:  Vibrational frequencies of Na9F9. Each single mode is plotted as a diamond 
                  and the diamonds are connected to show the IR-spectrum 
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Na14F13 
 

Due to its interesting symmetry properties, this cluster has already been investigated in 
the literature. Rayane et al. studied a broad range of clusters with configuration NanFn-1 
and experimentally determined their dipoles and polarizabilities [36].  
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     In addition, they theoretically 
modelled them as consisting of 
ions, for which pseudo potentials 
are used, and one excess electron 
which is treated quantum 
mechanically.    
     With this simple model they 
found a breaking of the Oh 
symmetry in Na14F13 due to a 
second-order Jahn-Teller effect. 
This means they computed a 
ground state of C3v symmetry 
along the (111)-axis, with a big 
dipole in this direction. Despite 
that big dipole the energy 
difference of this structure and Oh 
was calculated to only 0.04 eV, 
which is of course far smaller than 
the error in their calculation. Furthermore they also find electron states centered on one of 
the edges (C2v) or faces (C3v) (with the corresponding nuclear distortions) which are 
lower by 0.02 eV and 0.01 eV compared to Oh symmetry. Accordingly, their symmetry 
breaking is a ferroelectric instability, because it spontaneously creates a big dipole. 
     Since effects of this type have already been predicted by Landman et al. in 1985 for 
Sodium Chloride [37], and later on studied by Ochsenfeld et al. for K14Cl13 and Li14F13 
[38], it seems reasonable to take these effects as real. On the other hand Ochsenfeld et al. 
predict the effect for Li14F13 to be much smaller than in clusters where heavier Halides 
are used. Since the ionic polarizability of Fluoride is considerably lower than those of 
other Halides, a ferroelectric instability seems to be less likely.  
     For this reason we use our more accurate NRLmol code to calculate the vibrational 
spectrum and see whether there exist negative frequencies corresponding to a saddle 
point in the energy surface and having as consequence a symmetry breaking. However, 
our calculation does not confirm this notion; instead we find a normal spectrum 
comparable to the ones we calculated for other clusters. 
 
 
 
 
 
 

Fig. 2.17: Na14F13 geometry (3x3x3) with  
    distances in aB 
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 Fig. 2.18: Vibrational frequencies of Na14F13. Each single mode is plotted as a diamond 
                  and the diamonds are connected to show the IR-spectrum 
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Na18F18 
 

We chose this cluster as the last one to compute, because it is the first structure where a 
NaF pair is totally surrounded by other ions. Furthermore this structure has a dipole 

Fig. 2.19: Na18F18 (4x3x3) with distances in aB 
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moment along the z-axis, where four ions occur in a row. This dipole moment can be 
compared to the Na18F17 cluster, where one Fluoride corner atom is missing.  
 
 

(2.70) 
 
 
     Apparently, the missing ion is replaced by a surface state of the highest lying electron, 
which partly compensates the effect so that the dipole moment is only slightly changed. 
In [36] the dipole moment of Na18F17 was computed to 5.08 e aB and thus lying close to 
our result of 4.60 e aB.  
     Next it is interesting to look at the formation energy. 
 

(2.71) 
 
This is especially interesting, since this calculation together with the formation energies 
of Na4F4, Na6F6 and Na9F9 are sufficient to estimate all the energies of NaF pairs 
occurring in the crystal. For corner, edge and face atoms this was already done during the 
previous calculations, but now we can summarize all four estimates.  
 

TABLE 2.14: 
Estimates of the energies of bulk corner, edge, face and center NaF pairs in eV 

corner edge face center 

7.01 7.53 7.63 9.11 

 
 
Even if this estimate can only be considered as rather crude, the result for the center pair 
is very close to the experimental bulk value of 9.30 eV. Furthermore, a refinement of our 
result can simply be done by additional calculations on larger NaF-clusters. 
     Before finishing our DFT studies with the IR-spectrum of this cluster, we present the 
two polarizability tensors. 
 
 

(2.72) 
 
 
Compared to Na9F9 the ratio �vib/�e remains practically unchanged, which increases the 
interest whether this remains valid for even larger clusters. 
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     Finally we plot the vibrational frequencies and their predicted IR-spectrum. 
 
  Fig. 2.20: Vibrational frequencies of Na18F18. Each single mode is plotted as a diamond 
                  and the diamonds are connected to show the IR-spectrum 
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The spectrum resembles the Na9F9 spectrum closely. Both have the high IR-active peaks 
at �340 cm-1. 
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Chapter 3    

Classical models 

 
 
 
 

3.1   Motivation 
 
After spending most part of this thesis for DFT calculations and the discussion of the 
results in the scheme of quantum mechanics, let us take one step back and think about 
classical mechanics models. Subchapter 1.3 already gave a brief discussion, and the 
question is why it might be advantageous to have classical models in addition to such 
powerful theories as DFT. 
     To clarify this point, we summarize the development of models that describe systems 
using classical mechanics. We confine ourselves to ionic compounds, where the alkali 
halides present the most important subgroup. For these crystals the important feature, as 
the name implies, is that the atoms are practically ionized. Unlike covalent bonding 
(which is quantum mechanical) there is an obvious classical contribution to the energy: 
The Coulomb energy of the ions.  
     This energy alone already accounts for crystal formation. It is a simple theoretical 
problem and can easily be obtained from experiments that the energy cost for ionization 
of the cations minus the electron affinity of the anions will be regained at a distance 
considerably bigger than the crystal bond length. Consequently, in the simplest model, 
we only need one additional energy term that stops the ions at the equilibrium bond 
length and prevents them from falling into each other. As is known from quantum 
mechanics this repulsion results from the overlap of the electron shells and therefore it is 
most realistic if it decreases rapidly at larger distances. Accordingly, the obvious choice 
is the so-called Born-Mayer repulsive energy term, used in many classical models, 
sometimes in slight variations. 
 

(3.1) 
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In formula (3.1) the two empirical parameters Aij and �ij are both positive and obtained 
by fitting the model to crystal and/or molecular data. 
     Here we find the first difference between the original motivation and the current 
situation. In the past, the available computational power was not sufficient to get 
reasonably good ab initio results to which these parameters could be fit. Therefore the 
method of choice was to fit them to experimental data in order to have a model to predict 
other structures and properties. A fit to crystal data, which was widely used, is the one by 
Tosi and Fumi, dating back to 1964 [39]. From a theoretical point of view, this is not 
totally satisfying. It would be more interesting and consistent to make fits to ab initio data 
and compare the results with experiment after that.  
     This fit is quite good for the crystal structure, but as we go to smaller clusters the 
discrepancies become more and more obvious. Especially when looking at other 
properties, apart from energies and geometries, a less simplistic model is needed.     
     One improved model was developed and thoroughly tested by D. Welch et al. [31,40]. 
Their so-called “shell model” assigns fixed polarizabilities to each single ion and includes 
the electrostatic interaction energy of the induced dipoles. Important to note is that the 
ions are assumed point-polarizable, which means that the induced dipoles are exactly 
situated at the sites of the nuclei. Furthermore, a modification of the Born-Mayer 
repulsion is implemented to avoid a polarization catastrophe, i.e. a “valley” in the energy 
surface due to negative dipole-dipole interaction energy, leading to the global minimum 
of the total energy at zero bond length. In the Welch shell model the interaction energy of 
two ions is: 
 
 
 
 

(3.2) 
 
With this formula two additional empirical parameters are introduced: Qi and the 
polarizabilities �i. The energy terms are explained as follows: 
     After the Coulomb interaction of the ions we get the modified Born-Mayer energy. It 
can be visualized by imagining the repulsion to occur between the electron clouds, which 
are uniformly detached from the ions because of the induced dipoles. Next comes the 
Coulomb interaction between ions and dipoles. Finally we have the dipole-dipole 
interaction and the positive formation energy of the dipoles �2/2�. 
     Using this model Welch et al. computed vibrational frequencies, geometric parameters 
and various other values for a broad range of alkali halides. 
     At this point another reason for using classical models becomes obvious. It is due to 
the conflict between exactness and computer time. Single structure calculations might not 
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be the problem nowadays, but to make molecular dynamics simulations, the time factor 
becomes important again. Needing time steps of femtoseconds it is evident that a huge 
number of calculations are required to reach time spans where interesting things like 
structure conversions will happen.  
     Consequently, according to the problem one wants to solve, it has to be estimated 
which model will best serve the purpose. For static calculations ab initio methods present 
the first choice, but the more time steps required, the simpler the model has to be. 
     Therefore let us discuss one recent example where the application of the Welch model 
is sufficient and also necessary, because more complicated models and especially ab 
initio calculations would consume too much computer time. It is about an experiment on 
structural transitions of singly charged Sodium-Chloride clusters of the type (NaCl)nCl- 
[41]. R. Hudgins et al. found experimental evidence that some of the structures, which 
were produced by laser vaporization of a NaCl rod, decayed into a different geometrical 
conformation with the same number of atoms. As example, immediately after the 
vaporisation, there were 3 different structures of type (NaCl)35Cl- (with the bulk fragment 
forms 5x5x3, 5x4x4 and 8x3x3). Depending exponentially on temperature, two of those 
structures had decayed into the third one after a certain time span. To explain these 
processes and the observed time spans, two other papers [42,43] (written by J. Doye and 
D. Wales) applied the Welch model to compute the energies of those structures and 
additionally the energies along the reaction pathways. To do this, they had to scan the 
potential energy surface as a function of the atomic coordinates, which involves a huge 
number of calculations. Thus ab initio methods are not practical. Then they set up a 
master equation for the transformations. The solution indeed was able to explain the 
processes. Even the observed half-lives of the different structures were reproduced very 
closely. 
       Apart from the approach by Welch et al. there exist many different other models, 
which can be crudely separated into two groups. First, there is the group which stays in 
the classical regime, but introduces more and more energy terms to model the various 
aspects of the systems. An example would be the work by P. Madden et al., who among 
other things developed classical models for MgO [44-46]. The second group includes 
models where ab initio methods are incorporated and applied together with classical 
ideas. This seems to be especially promising in the field of molecular dynamics, since 
computer speed increases steadily and ab initio methods are superior to empirical 
classical models, when only the accuracy is compared. 
     However, going back to our motivation in 1.3, the main objective was to get intuitive 
insight, which can only be provided by models that are also simple enough to keep track 
of. This condition would be fulfilled by a model comparable to the Welch-model, but it 
would be preferable if the appearance of the dipoles could be avoided in the exponential 
Born-Mayer function. If the polarization catastrophe can be cured by other means, the 
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dipoles retain their classical behaviour. This would definitely be preferable for our 
purposes.  
        
 
 

3.2   Application to NaF-clusters 
 

3.2.1   Point-polarizable model for the NaF monomer  

As in chapter 2, we start with the simplest system. What we learned about the monomer 
from DFT, was that the polarizability cannot simply be understood as the sum of the free 
ion polarizabilities. Nevertheless, those are commonly used in classical models, so it will 
be worthwhile to find out how far we can get with this model in the monomer.  
     Therefore we look at the molecule at 
fixed bond length d (simply the DFT 
result) and only worry about the dipole 
moment and the electronic polarizability. 
For this purpose fixed static charges �q 
and polarizabilities �Na and �F are 
assigned to the ions. 
The ionic dipoles will then optimize, in 
order that electric field and induced 
dipoles are consistent. In the course of this 
calculation all dipoles are counted 
positive when they point along the 
direction of the arrows in Figure 3.1. Last 
but not least we include the possibility of an external electric field, which is also counted 
positive parallel to the arrows. 
     The following equations are set up for the two dipole moments: 
 

(3.3) 
 
Since they are totally symmetric, we also get symmetric solutions. 
 
 
 

Na F 

�Na �F 

Fig. 3.1: Scheme for the NaF monomer 
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(3.4) 
 
 
Obviously, the polarizability of the ions is modified from the originally assigned value by 
the expression in front the parentheses. However, this “local field” enhancement is weak, 
because the cube of the bond length is far bigger than the polarizabilities. When we use 
the DFT results from Table 2.3 of �Na= 0.14 10-24 cm3 and �F= 1.23 10-24 cm3, the bond 
length d= 3.69aB and q= 1, we get increases in the polarizabilities of 5.1% for �F and 
35% for �Na. �Na is small anyway, so this enhancement does not lead to a significant 
contribution.  
     By using (3.4) we can also set up the total dipole moment of the molecule and the total 
electronic polarizability.  
 
 

(3.5) 
 
 
This result was also derived in [47]. By using the DFT numbers as input and setting   
Fext= 0, we get for NaF: 
 

(3.6) 
 
It can be seen that the total dipole moment is quite close to the DFT result, whereas the 
polarizability is far less than the DFT value of �tot=3.33 10-24 cm3. To amend the error in 
�tot, there are two points which became clear during the studies of chapter 2. First we saw 
in 2.2.3 that the induced dipole moment cannot always be treated as linear in the applied 
field, namely we found an increase in the polarizability defined by (2.11) as we go to 
higher fields. Second, chapter 2.3.3 showed that the polarizability strongly depends on 
the charge of the ion. Both these insights seem to show that it is justified to improve the 
classical model by increasing �Na and �F. 
     Nevertheless, we find ourselves in a dilemma, since if we simply increase the 
polarizabilities used as input, the result for the total dipole moment moves further away 
from the DFT number. This implies that the second parameter q has to be changed. If we 
want to reproduce both the DFT polarizability and dipole moment, then we get the 
unacceptable result of q= 1.51 when fitting (3.5). By analysing (3.5) it becomes obvious 
that the fitting of the dipole moment is incompatible with the total polarizability. It is not 
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possible to satisfy both criteria and the result of the classical model will always be quite 
far off the DFT numbers. 
     Since for classical models polarizability and dipole moment have to be treated the way 
we did it, there seems to be no solution to satisfactorily reproduce the parameters of the 
monomer by only using the free ionic and atomic results plus a classical model.  
 

3.2.2   Classical models for other structures 

 Since classical models have indisputable value, it seems wisest to acknowledge that they 
will not explain everything.  In particular, diatomic NaF cannot be easily modelled with a 
classical story based on the free ions. Now we want to present a few ideas, where 
classical models might at least be applied to explain some of the phenomena found in 
chapter 2.  
     One of the outcomes of the DFT studies was that �e strongly depends on structure and 
size of the molecule. This is hard to incorporate in classical models, but the way 
suggested by the DFT result would definitely be to have varying charges on the ions and 
to let the polarizabilities depend on those charges.  
     Another nice effect to investigate occurs in the Na4F4 cube. In a classical point-
polarizable model we will get an induced quadrupole moment when applying an electric 
field along one of the C2 axes. The interesting part is that the polarizability along this axis 
will not be enhanced the way we found it in 3.2.1. Namely, when applying an F-field in 
z-direction, the field created at ion site i will have in first order no induced component in 
z-direction apart from the external one. All fields created by the other induced dipoles 
will cancel exactly along the z-direction. Thus, apart from very small second-order 
effects, �e of the point-polarizable ions can be obtained by fitting to the DFT result and 
then we can use the classical model to predict the quadrupole polarizability and compare 
to DFT. 
     For the classical calculation we assume perfect cubic symmetry with d= 4.33aB (the 
DFT result). Then the second order induced dipoles are lying exactly in the xy-plane, all 
at angles of 90˚ to their neighbours. Since the directions are shown in Figure 3.2, we only 
use the absolute values of the dipoles in our calculations. The first order dipoles are 
directly induced by the external field in z-direction.  
 

(3.7) 
  
 
 
 



 57 

�
�
�

�
�
�
�

�
+=�

�
�

�
�
�
�

�
+= )1(

32/3
)1(

3
)2()1(

32/3
)1(

3
)2(

3
2

4
3

;
3

2
4

3
NaFFFFNaNaNa dddd

µµαµµµαµ

( )( ) extFNaFNaxy F
d

αααα −+=Θ 22/3

1
2

9

( ) extFNaBxy Fa αα −=Θ 75.2

324324 1009.1;1065.0 cmcm FNa
−− ⋅=⋅= αα

 Fig. 3.2: First and second order induced dipole moments in the Na4F4 cube 

    
 
 
The fields of all first order dipoles then induce the second order dipoles. 
 

(3.8) 
 
In (3.8) the first contribution in both parentheses comes from dipoles of the same species, 
the second one from the other species. We checked the error made when stopping at this 
level compared to the full self-consistent calculation and found it to be less than 5% for 
these specific ionic polarizabilities, which is acceptable for our purpose. Now (2.65) is 
used to compute �xy and gives the result: 
 

(3.9) 
 
Since 4(�Na+�F) has to reproduce the electronic DFT polarizability of 6.95*10-24cm3 we 
can use this result and formula (3.9) to get the two ionic polarizabilities. Writing (3.9) 
with the computed DFT results yields: 
 

(3.10) 
 
Using (2.66), (3.10) and �Na+�F= 1.74*10-24cm3 the following estimate can be made: 
 

(3.11) 
 
Keeping in mind that the ions would not be considered as completely ionized, this result 
is quite reasonable. 
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3.3   Conclusion 
 
Reviewing this research project it becomes apparent that DFT is a powerful theoretical 
tool. It can be used for the calculation of a broad range of atomic or molecular properties. 
However, it would be very welcome if methods were worked out to better estimate the 
error made in those calculations. The quality and worth of the output would be greatly 
increased with the computation of error bars. On the one hand there exists the basic error 
made with the choice of the Exc-functional, on the other hand there are the numerical 
errors originating from the integration mesh, the self-consistent field convergence 
criterion and the force convergence criterion of the nuclei. Still, the calculated numbers 
agree very well with experiment.  
     In our calculations we found an increased molecular electronic polarizability 
compared to the free ions. The reason is the residual charge in the Sodium 3s orbital, 
which has huge dipole transitions to the 3p states. These transitions already explained the 
large � of the Na atom. Furthermore, we examined the vibrational spectra of a range of 
clusters, also with respect to their IR-activity. For Na4F4 we calculated the properties of 
two energetically very close structures, the ring and the cube. Most of the results showed 
fundamental differences. They can be explained with variations in the ionic 
conformation. Using the energies of larger clusters a guess for the formation energy of 
the bulk crystal can be made. The result was already very satisfactory and can easily be 
improved by further calculations. Finally, we could not confirm the symmetry breaking 
of the Na14F13 cluster found by another group. 
     Concerning classical models, it has to be accepted that they cannot take account of all 
observed features. One is better advised to mainly use them for visualization and 
applications to specific cases. Then they are a highly welcome and useful tool and can be 
used as general guidelines when solving problems.  
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