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Abstract of the Dissertation
Vibrations in Cs and Amorphous Silicon
by
Jaroslav Fabian
Doctor of Philosophy
in
Physics
State University of New York at Stony Brook

1997

This Dissertation reports on theoretical studies of vibrational
properties of Cgg and amorphous silicon. When molecules Cgg form
a solid, their infrared spectrum displays many weak vibrational
modes. Among possible activation mechanisms for these modes
are 3C isotopic impurities and anharmonicity. By performing a
Monte Carlo simulation and comparing its results with experiment,
the isotopic activation mechanism is excluded. Anharmonicity can
activate combination (with frequencies w equal to w; +w;, the sum
of two fundamental frequencies w;, w;) and difference (with w =
w; —wj) vibrational modes through either anharmonic interatomic

forces (mechanical anharmonicity) or a nonlinear dipole-moment

111



expansion in normal mode coordinates (electrical anharmonicity).
By modeling both types of anharmonicity it is shown that the
majority of the experimentally seen weak modes are caused by

electrical anharmonicity only.

Vibrational modes in amorphous silicon are studied by using
a realistic semiempirical model with 216 and 1000 silicon atoms
interacting via the Stillinger-Weber potential. In contrast to a re-
cent experiment and previous theoretical views, it is shown that
the vibrational modes decay on picosecond time scales and their
decay rates increase with increasing frequency. According to the
fracton model the interactions between three localized modes do
not play any role in the decay of localized modes. Simple scal-
ing arguments and a numerical realization of the fracton model
as a one-dimensional random-spring atomic chain prove that the
interaction between three localized modes is, in fact, the most rel-
evant interaction for the decay of high-frequency localized modes
in glasses with low mobility edge. Finally, the mode Griineisen
parameters v and temperature dependent coefficient of linear ther-
mal expansion «(7') are calculated. The resulting values of v differ
from the crystalline case in having all diversity suppressed, except
for a minority of high-frequency localized and low-frequency reso-
nant modes. The latter have very large, mostly negative v (up to

—30), caused by volume driven internal strain.
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Preface

This Dissertation is a summary of the research I have done as a gradu-
ate student in SUNY at Stony Brook (1993-97) with my advisor Philip Allen.
The Dissertation has two chapters which deal with vibrations in molecular and
solid-state systems. More specifically, the concept of anharmonicity (or inter-
action between fundamental vibrational modes) is exploited to yield various

observable properties of the molecule Cgy and amorphous silicon.

Chapter 1 is devoted to our theory of the infrared spectrum of Cgq. This
project started in 1994 with the goal to explain what Michael Martin and
Laszlo Mihaly observed: a plenitude of weak features in the infrared spectrum
of a single-crystal Cgg. These features were puzzling at the time (section 1.1
explains why). We had to develop several models before it became clear what
is the origin of the observed spectrum. In Sec. 1.2 I show how a combination of
experimenting and numerical modeling ruled out the isotope effect as a possible
activation mechanism for the weak features. (The isotopic symmetry breaking
was then the most popular hypothesis for the weak features.) Anharmonicity
came next. First we tried anharmonic forces between carbon atoms (Sec. 1.3).

Unsuccessfully. The resulting theoretical spectrum was much weaker than the



experimental one. Eventually we developed an anharmonicity model in which
light couples directly to two vibrational modes (Sec. 1.4). This mechanism
turned out to be the right one: the model spectrum has almost all the features
seen experimentally.

Chapter 2 is concerned primarily with the vibrations in amorphous silicon
(though many of the conclusions of this part are valid for glasses in general).
Theory of glasses is not yet developed and we have to rely on computer simula-
tions to get an insight into the physics of these structurally complex materials.
The work presented here started in 1995 and is a natural extension of the work
of Allen and Feldman on diffusive vibrational transport of energy in glasses.
Section 2.2 is an introduction to the subject. The model is described and the
properties of its vibrational eigenstates are discussed in harmonic approxima-
tion. Experiments by Scholten and Dijkhuis indicated that vibrational relax-
ation in amorphous silicon is much smaller than in crystalline silicon. This was
not surprising for the fracton model. Using a few reasonably sounded assump-
tions, this analytically tractable model was able to fit the experimental curves.
We took a different approach: using a realistic computer-generated model of
amorphous silicon we calculated the vibrational decay rates numerically. The
method and results of our calculation are described in Sec. 2.3. Our numeri-
cal results showed that the experiment was misinterpreted. Moreover, simple
scaling arguments and a one-dimensional example of the fracton model in Sec.
2.4, show that a very important premise of the fracton model (the negligibility
of the interactions involving three localized modes) is wrong. In effect, almost

all the conclusions of the fracton model regarding transport are incorrect.



Thermal expansion of glasses is a topic of enormous practical importance.
Experiments at low temperatures showed that the standard “tunneling” model
(STM) of Anderson, Halperin, Varma, and Phillips, has to be revised. Sev-
eral schemes going beyond the STM model have been devised to explain the
experimental results. In Sec. 2.5 I report on the first realistic calculation of
thermal expansion and Grineisen parameters in a glass—amorphous silicon.
Many interesting properties of vibrational modes (e.g., global indistinguisha-
bility) have been revealed by this calculation. In addition, section 2.5 proposes
a likely explanation of the observed low-temperature behavior of the thermal
expansion and Griineisen parameters in glasses.

Chapter 2 is concluded with a brief account of unfinished work (“work in
progress”). Many questions in the physics of glasses are open (the liquid-to-
glass transition being, perhaps, the most prominent one). The choice of the
topics in Sec. 2.6 therefore reflects our curiosity rather than anything else. For
example, the connection between random matrix theory and diffusons seems to
be purely academical (although it may initiate creation of an analytical model
for the vibrations in glasses). On the other hand, our treatment of internal
friction and sound attenuation in glasses may have practical applications.

Bibliography is included after each chapter.

To conclude the preface I wish to thank my collaborators and friends.
My gratitude goes first to Phil Allen who has patiently guided me through
complexities of physics research since I came to Stony Brook. Perhaps the
most valuable lesson I have learned from Phil is that theoretical considerations

should be closely related to experiment (past or future). Laszlo Mihaly and



Michael Martin helped me to understand the physics of buckyballs through our
conversations in their lab where many discoveries in this field were made. Joe
Feldman shared with us various models of amorphous silicon. Together with
Scott Bickham, Joe is thanked for many inspiring discussions and collaboration
(and also for his hospitality during my stay in the Naval Research Laboratory).
[ am also grateful to Herbert Schober for sharing his views on the physics of
glasses and for his hospitality during my stay in Julich. In my first years in
Stony Brook I was fortunate to discuss various aspects of many-body physics
with Jainendra Jain; the conversations have continued sporadically in the later
years too. Finally, the following is a list (in alphabetical order) of my friends
that have made my stay in Stony Brook enjoyable: Thanos Bardas, Adam
Halasz, Rajiv Kamilla, Vladimir Kostur, Chinmong Leung, Ilary Maasilta,

Guilherme Nunes, Alexander Rylyakov, Werner Schulz, and Kevin Wu.
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Chapter 1

Theory of the Infrared Spectrum of Cg !

1.1 Introduction

There has been a great deal of progress in revealing chemical and physical
properties of fullerenes. Much of the discussion on the subject was ignited
by the discovery of superconductivity in alkali-metal-doped Cgo [1]. Tt seems
that the current understanding is that superconductivity in these materials
is caused by a coupling between electrons and intra-molecular vibrations [2].
(For a competing model stressing strong electron-electron correlations, see Ref.
[3].) The intra-molecular vibrations in fullerenes are the subject of this chapter.
But rather than their coupling to conduction electrons, we will consider their
interaction with light. This interaction is experimentally accessible by Raman
and infrared (IR) spectroscopy [4, 5, 6, 7, 8, 9, 10].

The icosahedral (1) symmetry of Cgg allows 46 distinct vibrational modes,

IM. C. Martin, J. Fabian, J. Godard, P. Bernier, J. M. Lambert, L. Mihaly, Phys.

Rev. B 51, 2844 (1995); J. Fabian, Phys. Rev. B 53, 13 864 (1996).



out of which four are IR active (77,) and ten are Raman active (24, @ 8H,).
It is customary to denote the triply-degenerate IR modes at frequencies 527,
576, 1182, and 1427 cm™', as T',(7), 1=1,2,3,and 4, respectively. 32 optically
inactive (silent) modes are 1A4,,371,,4Ts,,5T5,,6G,,6G,, and TH,. Higher-
order modes can be seen experimentally by increasing the optical depth of a
sample. In principle there are 380 second-order combination modes IR allowed
by the I, symmetry [8]. Second-order overtones are IR forbidden.

Several authors reported observation of weak modes in Raman [10, 11] and
IR [7, 8, 9, 12] spectroscopy. Wang et al. [7], Martin et al. [8], and Kamaras et
al. [9] analyzed the weakly active features in conjunction with Raman [10] and
neutron measurements [13] to extract the 32 fundamental frequencies of the
silent modes. The frequencies differ significantly among the authors, leaving
the question of the assignment of fundamentals open.

Possible mechanisms of activating the weak modes include crystal field
effects, '3C isotopic impurities, and anharmonicity. Impurities, dislocations
and electric field gradients at surface boundaries can be excluded due to their
sample dependence. It is believed that the fcc crystal field activates a few of
the weak modes. The crystal field reduces the I, symmetry of Cgo and activates
some of the silent modes. However, above 260 K the Cgq molecules freely rotate
and the time-averaged crystal field perturbation is zero. As a result, the silent
modes should disappear. This was indeed experimentally observed by Mihaly
and Martin [14] (and appropriately named “motional diminishing”).

The isotope effect is examined in Sec. 1.2. This effect is based on the fact

that not all the carbon atoms that form the molecule Cgy are isotopes 2C;



about 1% of carbon atoms found in nature are isotopes '*C. A small mass
difference between the two isotopes breaks the I, symmetry and makes all the
vibrational modes of Cgg infrared active. How can one decide whether this
mechanism is present in the observed spectrum? Martin et al. [15] compared
the infrared spectra of a Cgy sample with 8% of *C present, and a sample
with the natural abundance (~ 1%) of C. Except for a trivial broadening
and softening of the transmission peaks, the spectra were identical! In Sec.
1.2 we show that if the silent modes were activated through isotopic symmetry
breaking, the IR intensity of these modes in the 8%-enriched sample would
be (on average) at least 4 times greater than that in the natural abundance
sample. In the calculation we use the bond-charge model of Sanguinetti et
al. [16] and known intensities of the four IR-allowed modes. The enrichment
of the sample by either 1 or 8% is modeled in a Monte Carlo cycle. The
comparison of our calculation with experiment shows that the isotope effect is
not the cause for the weak active IR modes.

In the remaining sections we study the effect of anharmonicity in the IR
spectrum of Cgg. (General formalism of anharmonic effects on IR activity is
given in [17, 18, 19, 20, 21, 22].) There are two ways in which anharmonicity
can display itself in an optical spectrum. It is driven either by anharmonic
interatomic forces (mechanical anharmonicity) or by an anharmonic coupling
of a photon field to two or more vibrational modes (electrical anharmonicity).
Although the two mechanisms are not independent, each has its own charac-
teristic absorption intensity pattern. When compared with an experimental

spectrum one can decide which of the two kinds of anharmonicity prevails in



the IR spectrum of Cgo. Although the spectrum may contain cross contribu-
tions from both phenomena, here they are treated separately.

Several models have been used to calculate absorption intensities in har-
monic approximation. Tight-binding models [23, 24] are in complete disagree-
ment with the experimental results. The bond-charge model [16] fits very well
with frequency positions of fundamentals but the IR intensity pattern disagrees
with basic trends in the observed spectrum. The same is true for a Hubbard-
type model stressing electronic correlation effects [25]. Relative intensities are
best reproduced by the local density approximation (LDA) [24, 26]. How-
ever, due to its computational complexity, the LDA scheme is not convenient
for computing second order intensities. We therefore propose a semiempiri-
cal model which is satisfactory for a qualitative comparison with experiment.
Figure 1.1 summarizes the performance of various models in calculating the
absorption intensities.

Some characteristics of the experimental IR spectrum [8] are shown in Fig.
1.2. Combination (difference) modes are higher-order modes with frequency

w equal to w; + w;, the sum (difference) of fundamental frequencies w;. Their

1

intensities are temperature dependent according to (n;+ l) +(n;+ 5

5 ), where n;

is the Bose factor, n; + 1 = 1 coth(hw;/2kgT), with a temperature 7' and the
Boltzmann constant kg. The following features can be observed in the spectra:
(1) besides four first-order peaks (at 527, 575, 1182, and 1427 cm™'), there are
more than 180 weak absorptions; (ii) no difference peaks are resolved (i.e.,

no temperature dependence of intensities except a trivial improvement in the

frequency resolution at lower temperatures); (iii) most of the spectral weight is
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Figure 1.1: Comparison of calculated relative absorption intensities of IR-
allowed T1,(7), 1=1, 2, 3, and 4, modes with experiment. Intensities of the

band Ti,(1) are taken to be unity.
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in the high-frequency regime (1000 - 3000 cm™'); and (iv) weak modes around

four first-order bands are not enhanced through a resonance effect.

We treat the frequency positions and absorption intensities independently.
Normal modes and frequencies are calculated using a simple force-constant
model proposed by Weeks [27]. This model fits IR data reasonably well but is
not expected to give especially realistic eigenfrequencies for the silent modes.
The dipole moment which arises due to the coupling between electrons and
vibrational modes, determines the absorption intensities [28]. Only second-
order combination and difference modes are considered. Section 1.3 deals
with the mechanical anharmonicity problem with the Morse function used for
the interatomic bond-stretching potential [27]. A linear relation between the
dipole moment and ionic coordinates is proposed in this section. The relation
contains parameters fittable to the relative harmonic absorption intensities.
Second-order modes are computed using a perturbation method ignoring pos-
sible resonances. We find that the intensity pattern of the second-order modes
fails to reproduce experimental features. An electrical anharmonicity model
is therefore introduced in Sec. 1.4. Normal frequencies and normal modes
are again taken to be those of the Weeks model. A semiempirical model for
an electronic configuration on a distorted Cgg is presented, which allows the
electronic coordinates to depend in a nonlinear fashion on positions of ions.
This gives rise to an intensity pattern very similar to the experimental one.

Finally, conclusions are drawn in Sec. 1.5.



1.2 The Isotope Effect

This section examines the role of isotopic symmetry breaking in the acti-
vation of the weak modes seen in the Cgg IR spectrum. Several works [7, 8, 9]
argued that '*C isotope substitution is a likely agent for activating silent modes
since for the natural abundance of 3C, about one-half of all Cgy molecules
would have at least one '*C which would break the I}, symmetry and activate
all the vibrational modes. One way to decide whether the isotope effect ac-
tivates the weak modes, is to compare the spectra of samples with different
isotopic substitutions: the more *C-enriched the sample is, the more intense
the weak modes should be. Martin et al. [15] measured the IR spectrum of

8% 13C-enriched Cgg crystals. Figure 1.3 presents the data.

The uppermost curve is the transmission of a natural abundance Cgg
single crystal. The four IR-active T}, vibrational modes are observed to be
completely saturated around their known positions of 527, 576, 1182, and
1427 cm™!. All other observed absorptions are due to IR-forbidden fundamen-
tal vibrations or second- (or higher-) order modes. The middle curve of Fig.
1.3 displays the IR spectrum of an 8% '*C-enriched Cgg crystal. When com-
paring this spectrum with that of the natural abundance crystal (top curve
of Fig. 1.3), the primary changes observed are that all of the visible modes
have broadened and slightly softened. However, the relative intensities of the
weakly active modes do not change significantly. Nearly all the features of the
transmission spectrum of the 8% enriched sample can be modeled by simply

broadening the spectrum obtained for the natural abundance crystal assuming
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Figure 1.3: Infrared spectra of Cgg single crystals [15]; the two upper curves
have been vertically offset for clarity. The top spectrum is for a crystal made
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the vibrational frequency is proportional to 1/y/m, m being the isotope mass.
The bottom curve of Fig. 1.3 is obtained by this method. A careful compari-
son of the measured 8%-enriched spectrum and the spectrum generated from
the broadening reveals that they are indeed very well matched, indicating that
13C substitutions change the frequency of the mode, but do not influence the
intensity.

If the fundamental modes are being activated by symmetry breaking due
to isotopic substitutions, one would expect the *C-enriched samples to have
greater symmetry breaking, and therefore greater IR activity for originally
silent modes. To demonstrate this, we used a theoretical model of Cgy based
on the bond-charge model of Onida and Benedek [29] (the only change was to
use the better experimental values [30] of 1.4 A for the hexagon-hexagon bond
length and 1.45 A for the pentagon-hexagon bond-length). The vibrational
frequencies calculated with this model are within 3% of the experimental IR
and Raman mode frequencies.

The calculation of the IR intensity of a given mode requires, in principle,
the knowledge of the electronic eigenstates of the deformed molecule. To avoid
the numerical complexity of such an approach we used an approximate pro-
cedure, based on the experimentally known IR intensities of the four allowed
Ty, modes and on the calculated vibrational eigenvectors of the isotopically
changed molecule. When expanded in terms of the original eigenvectors of the
pure 2C Cgp molecule, some or all of the new eigenvectors had components in
the directions of the original Ty, eigenvectors. Each degenerate species of the

unperturbed Ty, eigenvectors are chosen to carry their dipole moments in the
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Cartesian x, y, and z directions. The intensity of each of the four IR-active
T1, modes was then taken from experiment [31] and are denoted Ay, Ay, As,
and A,. The IR intensity of mode [ is then calculated using
3 [ 4 2
I = z; (Z; \/E@;l) ) (1.1)
i=1 \j=
where Q;z is the component of eigenmode [ in the direction of the :th degener-
ate mode of the original T1,(j) eigenvector; ¢ sums over the triple degeneracies
and j sums over the four Tj, modes. The isotopic content is modeled by a
Monte Carlo simulation: each of the 60 carbon atoms is given a '*C or a '2C
mass with appropriate probabilities representing the natural abundance or 1*C
enrichment (1.108% and 8% '*C, respectively). The dynamical matrix for the
resultant molecule was then diagonalized to calculate the eigenvectors, and
Eq. 1.1 was applied . For a given isotope concentration, this process is re-
peated until a general sampling of all possible 13C configurations is calculated
and the results are averaged together. For the natural abundance case, there
are relatively few possible configurations, but for the 8% ?C-enriched case,
there are a huge number of configurations. We sampled over 15,000 possi-
ble configurations for the 8% case, which should suffice to obtain the correct
trends.
We plot the resultant calculated IR intensity for 1.108% and 8% *C Cgg
molecules in Fig. 1.4. The Lorentzian widths of all modes have been taken

to be uniformly 3 cm™!.

The four Ty, modes in Fig. 1.4 have peak heights
of approximately 2000, so the intensities of the weakly activated modes are

approximately a factor of 10* smaller. This is in contrast to the experimentally

11
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observed intensity ratio of only a factor of ~ 10. Furthermore, the average
intensity of the weakly activated modes increases by a factor of 4.45 in the 8%
enriched calculation compared to the natural abundance calculation, but no
similar increase was seen in the experiment.

We must therefore conclude that isotopic activation of previously silent

modes is not the symmetry-breaking mechanism in Cgg.

1.3 Mechanical Anharmonicity Model

Considering the Cgg molecule as a system of oscillating ions with elec-
trons moving adiabatically in their field, the ionic dynamics is governed by

the following potential:

1 46 94 9,959k
53D metQl + S S @@ @i (12
i=1g=1 1,5,k=1 ¢q,r,5=1

Here m is the ion mass, ();, is the ¢gth normal mode coordinate belonging to
the frequency w;, 1=1,..,46, ¢=1,..,g;, and g; is the degeneracy of the :th band.
Higher-order terms are neglected. The anharmonicity coefficients C, j, 1s are

given by
I
iq,jr,ks — 8@2'an]‘¢an3

with the derivatives taken at () = 0. Light couples to the system via the term

(1.3)

Vi = —u(Q)- E. (1.4)

where E is the externally applied electric field and p stands for the dipole

moment of the system. The latter is generally a nonlinear function of normal
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coordinates
16 g 1 46 919k
=3 M;yQi + 3 S My s Qir Qs (1.5)
1=1g=1 Jk=1r7,5=1

Again, higher-order terms are not included and the following formulas deter-

mine the expansion parameters M;, and M, s:

p
M;, = , 1.6
q anq ( )
and
82
M ks = . (1.7)

anrans .

The vectors M;, are nonzero only when the ();, mode is IR allowed.

Anharmonic dynamics (Ciyjrks 7 0) and a linear coupling of light to
vibrational modes (My, ;s = 0) characterize the mechanical anharmonicity
(MA) phenomenon.

Several force-constant models for Cgo have been presented [27, 32, 33].
To calculate normal coordinates and the anharmonicity coefficients Cjg ks,
we use the model suggested by Weeks [27], which is a refined model of Weeks
and Harter [34]. This model contains two parameters which were fitted to
selected TR and Raman frequencies. lonic dynamics is governed by two types

of interactions: (i) the Morse potential producing anharmonic terms

Vin = Z D{1 — exp|[—a(r; — )]}, (1.8)

controls bond stretching. Here D, «, r.,, and r; are, respectively, the dis-
sociation energy, Morse anharmonicity, equilibrium and instantaneous length

of the 7th bond. Summation runs over all bonds. The dissociation energy is

14



estimated as the average of the dissociation energies of a single and a double
C, bond, D = 5.0 €V, the equilibrium length is taken to be 1.4 A, and the
parameter o was fitted to the value 1.6 A1, (ii) The bond-bending harmonic

potential is given by
V= S0 - 0, (19)
j

where the summation is over the 60 pentagonal angles with the equilibrium
angle of 37 /5 and the 120 hexagonal angles with the equilibrium angle of 2x /3.
The potential does not distinguish between hexagonal and pentagonal angles

and the best fit yields n = 12.48 eV /rad.

The bond-stretching potential in the harmonic approximation together
with the bond-bending potential give normal coordinates and frequencies. The
coefficients Cjg i, ks come from the expansion of the Morse function to the third
order in ionic distortions from equilibrium and from the transformation of the
Cartesian coordinates to the normal mode ones computed numerically. Qual-
itative behavior of the normal modes of the model (with the bond-stretching
potential in the harmonic approximation) is discussed in the original papers
[27, 34]. Here it suffices to note that lower-frequency normal modes exhibit
mostly radial distortions while the motion of higher-frequency ones is tangen-

tial.

The IR intensity of a given mode is proportional to the square of a dipole
moment associated with this mode. If ionic charges of the same value were
put on the vertices of Cgp, the resulting dipole moment would be zero due

to the center-of-mass conservation. The dipole activity is therefore caused by

15



changes in the electronic configuration.

Carbon valence electrons fall into two classes. The first class consists
of o electrons positioned with the highest probability in the middle of bonds.
These electrons have fixed charges and do not contribute to the dipole moment
(due to the center-of-mass conservation). In the following the notion of a bond
charge will include also a contribution from ions in some effective way. The sign
of such an effective bond charge will not be important; it can be either positive
or negative. Allowing the bond charges to acquire a charge with dependence
on the bond lengths or by some other mechanism leads to a spectrum where
the T1,(2) mode is hardly visible instead of having the second largest activity
[16, 35].

The second class consists of 7 electrons, which can be considered as vertex
electrons moving in the field of their parent ions. Let these electrons interact
further only with the three nearest ions. We model the positions of the =
electrons in the following way. Let r; denote the radius vector of the zth

electron measured from the vertex : with the position R;. R; and Rg-i), j =
1,2, 3, the nearest ions positions, are relative to the center of Cgg. The direction
of r; is taken to be the direction of the normal vector n; to the plane given by
three nearest ions with a rescaled position of the one making the double bond

with the vertex. This condition,
n; - (RY —R) =n; - R - R = 0, (1.10)

introduces a fitting parameter ¢y, effectively measuring the ratio of the double-

and single-bond charge (here the bond R; — Rg) is the double one). Single
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bonds are bonds connecting a hexagon with a pentagon and double bonds are
connecting two hexagons. When there is more charge on the double bond than
on the single one, the parameter ¢; is greater than unity. If the bond charge
is negative, the direction is out of the sphere and if it is positive, the direction
is inwards.

Consider the distance d of the vertex ion to the plane given by its three
nearest ionic neighbors (with the double bond neighbor rescaled as explained
above). Denote as d., the distance for the equilibrium configuration. Let, for
a moment, the effective bond charge be negative. If a distortion of the ionic
positions occurs such that d > d., the vertex electron will be pushed “out” of
the Cgg sphere and vice versa. If the net bond charge is positive, the situation
is inverse. This phenomenology reflects a Coulomb repulsion (attraction) of
the vertex electron by (to) adjacent bonds. When these bonds move closer
together the vertex electronic cloud is deformed such that the mean electronic
position will be as far (close) as possible from (to) the bonds. The effective
rate of the deformation will be the second free parameter ¢; (the same for each
vertex due to symmetry). The relation between the electronic position and the
distance between the vertex ion and the plane given by its nearest neighbors

can then be expressed as follows :

r= {1+ aldi(er) — deglen)Iiler). (1.11)

where the dependence on the parameter ¢; is indicated. The dipole moment

is then
60

p=> [14c(d; — deg)Im;. (1.12)

=1
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The normalization in both formulas is not important for calculating relative
values. The distances d; depend for small distortions linearly on normal co-
ordinates, so only the linear term is kept here because the mechanical anhar-
monicity couples this linear displacement to two normal modes.

There are two parameters in this model, ¢; and ¢;. In the harmonic

approximation the intensity of the jth mode is [28]
95
1 2 .
=3 M, (1.13)
g=1

Experimentally obtained relative intensities are 1., 0.48, 0.45, and 0.378 for
the modes T1,(1), T1.(2), T1.(3), and Ty,(4), respectively [31]. The best fit
to these intensities yields the values ¢; = 1.59 and ¢;=0.67 A-1. The IR
spectrum obtained with this fit (all peaks in this and following figures have the
Lorentzian widths taken to be uniformly 2 cm™') along with an experimental
one is shown in Fig. 1.5. Agreement is excellent.

For the frequencies that are not in the immediate neighborhood of the
frequencies of the four IR-allowed fundamentals, the following formulas were
obtained by Szigetti [19] for the second-order intensities of combination and

difference modes:

2
9k.91
MA kA witw( (MG gris)
Iwk-}-wl —  2m® wpwy (1 + g + TLZ) 7“52;1 (jEZI:R WJQ_(W}C‘I'—W[)Q s (114)
and
9k,41 2
MA . _h_wi—wg _ : (M;|C5 kris)

respectively. The summation in brackets is over four IR-active bands and the
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Figure 1.5: First-order IR-allowed intensities calculated in Sec. 1T and exper-

imentally obtained spectrum (inset) by Hare et al. [6].
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inner-product notation stands for the sum over a degenerate set:

95

(M;|C;.) = Z;quchw. (1.16)

o
When the frequency of a combination (difference) mode is near the frequency
of an IR-allowed mode (the Fermi resonance effect), a perturbation leads to a
mixing of the two modes and spreads out their frequencies [17]. The second-
order modes are enhanced, conserving the original spectral weight so the in-
tegrated absorption intensity of the band is unchanged by the anharmonic
perturbation. If the spectral resolution is not enough to resolve the two modes
the resulting picture is similar to the original one without a perturbation. The
Fermi resonance effect has not been seen in Cgg.

Figure 1.6 shows the results of the numerical calculations based on the
Eqgs. 1.13-1.15. Some trends in the spectrum are clear already from the equa-
tions. First of all the second-order intensities are relatively weak compared
to the experimental spectrum in Fig. 1.2 (the experimental picture here is
somewhat misleading due to the saturation of first-order peaks). Most intense
modes have frequencies close to the four IR bands, leaving high-frequency
combination modes practically invisible. Moreover there are relatively intense
difference modes (identified by their strong temperature dependence) in the
lower part of the spectrum. These features are in contradiction to experiment,
thus excluding mechanical anharmonicity as the mechanism for activating the
observed weak modes. In matching the combination modes to experimental
data, authors in Ref. [8] did not find any evidence for a significant deviation

of the frequencies of these modes from the values of w; +w;. This supports the
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Figure 1.6: IR spectra at 300 and 77 K computed using the mechanical an-
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above conclusion that mechanical anharmonicity is not producing significant
effects in the Cgp IR spectrum, since the relative frequency shift as a conse-
quence of mechanical anharmonicity only is of the same order of magnitude as

the relative intensities of the second-order modes.

1.4 Electrical Anharmonicity Model

The electrical anharmonicity (EA) is a less studied phenomenon of molec-
ular physics than the mechanical one. It is based on the fact that the dipole
moment is generally a nonlinear function of normal modes. In view of Eqgs. 1.2
and 1.5, electrical anharmonicity arises from the second term in Eq. 1.5, while
the ionic dynamics is harmonic (Cj, jrks=0). Selection rules for the second-
order modes are reflected in the elements of the matrix M, ;, and are the
same as in the case of the mechanical anharmonicity. Since the ionic dipole
moment is linear in ionic positions it is clear that the nonlinear contribution
stems from a nonlinear response of electronic positions to a change in ionic
configuration. A harmonic treatment now suffices for the ionic displacements;

the Weeks model [27] is used.

The nonlinear electronic response is modeled in the following way. Con-
sider again a 7 electron in the field of its parent ion and adjacent bond charges.
The interaction with its nearest-neighbor ions is governed by the Coulomb po-

tential

1
Visi(ri) = —ki ) ;
7R =R 4 r

J

(1.17)

22



and similarly the interaction with adjacent bond electrons is given by

1
Vepe(r;) = Kpe D — - -
7 (R = RY) /2 + 1

(1.18)
The summations are over the three nearest ions j and R; is the position of the
vertex ion. Note that while R’s are measured from the mass center of Cgq, r;
is measured from the position of the ith vertex ion (R;). The strengths of the
interactions are measured by some effective charges «; and k. for neighbor ions
and adjacent bond electrons, respectively. Only the ratio ;/ks. is a relevant
fitting parameter. The motion of the 7 electron in the field of its vertex ion is

simplified by restricting it to a sphere around the ion with a radius R, which

will be the second fitting parameter:
r, = Rni. (119)

This gives a simple two-dimensional minimization scheme: for each vertex
and a pair of fitting parameters (R, ;/£s.) find a unit vector n; such that the

function

Veoi(ng) + Vepe (1) (1.20)

is minimal. The electrical dipole moment is then computed and resulting first-
order intensities (Eq. 1.13) compared with corresponding experimental values.
The best fit corresponds to values of R = 0.06A and ki/kpe = 4.80. For some
range of the parameters there are two electron positions for which the potential
in Eq. 1.20 has a local minimum. In such cases the global one was considered.
The best fit lies in the region with one minimum. It is obvious that the best

fits have no physical justification. To support the model we did simulations
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with different, more physical values of the free parameters obtaining the same
qualitative picture as will be shown later. It is also appropriate to remark that
a feedback from the adiabatic changes in electronic positions to ionic motion

is implicitly considered in the harmonic level in the force-constant model.

Second-order absorption intensities of combination and difference modes

now have simple forms [19]:

h w + w 9k-g1
EA k l 2 .
S = 14+n.+n M;, .. 1.21
RO Om wpwy ( * 1)7-;1 wn (1.21)
7,'2/ wk _ wl 9k,91 )
) — ny—n Y 1.22
Wk 1 2m wkwl ( l k) T§=:1 k ,l ( )

Figure 1.7 shows the spectrum obtained from Eqs. 1.21 and 1.22. The fol-
lowing features can be extracted. The overall intensity of the weak modes is
higher (in relative sense) than in the case of the mechanical anharmonicity.
Spectral weight is shifted towards higher frequencies. This is a consequence
of high sensitivity of electronic positions to tangential distortions, which are
characteristic for higher-frequency modes. The sensitivity of electrons to the
tangential ionic motion is also the reason that difference peaks have relatively
very small intensity (the difference peaks are most intense in the region of 600
- 1000 cm™!, however, the intensities are much smaller than those of combina-
tion modes in the region 1000 - 3500 cm™!). There is obviously no resonance
effect since the two terms in the Eq. 1.5 are independent. The frequency distri-
bution in the Weeks model differs from that in Cgg so a closer comparison with
experiment is not possible. One consequence is that in Fig. 1.7 weak features

up to 4000 cm ™! are visible, while experimentally weak peaks above 3500 cm™!
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have not been resolved. This difference in the frequency distribution may be a
part of the reason why our model has so little activity in the region 600-1000
cm™!. Note that almost all of the peaks experimentally observed in this region
were associated with modes IR forbidden in the second-order [7, 8] and their

appearance must be accounted for by other mechanisms.

1.5 Conclusions

We studied the possibility that the weak modes seen in the IR spectrum
of Cgg are activated by either isotope symmetry breaking or anharmonicity
(or both). If the modes were activated by the isotope effect, their intensities
would be enhanced by an additional '*C enrichment, as calculated in Sec. 1.2.
Such an enhancement was not seen experimentally. We therefore concluded
that the isotope effect does not activate the weak modes.

Anharmonicity can enter an IR spectrum as either mechanical or electri-
cal. We have proposed simple semiempirical models of the two phenomena.
The main features of our models are (i) separation of ionic dynamics and
mechanism of optical activation (the models can be used for any set of normal
modes), and (ii) emphasis on the w-electronic system rather than on bond
charges. Both models give a spectrum of combination and difference modes
which is compared with IR measurements. It is found that mechanical anhar-
monicity exhibits features different from those observed. These features can be
already expected from basic formulas (e. g., those of Egs. 1.14 and 1.15) and

the model described in Sec. 1.3 only helps to visualize them. As a by-product
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the intensities of four first-order IR-allowed bands are well reproduced.

The electrical anharmonicity model introduced in Sec. 1.4 is based on a
nonlinear response of 7 electronic configuration to ionic distortions. Now the
absorption spectrum has fewer characteristics given a priori by a theoretical
formula and is more model dependent. The main feature of the model, which
leads to a quite successful comparison of its spectrum with experiment, is that
electronic positions are much more sensitive to tangential ionic motions than
to radial ones.

The separation of mechanical and electrical anharmonicity is posteriorly
justified by the dominance of the latter. However, the IR activity around
four first-order peaks is caused by mechanical anharmonicity due to resonance
effects, as discussed in Sec. 1.3. There is still a region of optical activity
(600-1000 cm™') that this simple model cannot explain. Although trial assign-
ments exclude most of the observed peaks in the region as combination modes,
the question is still an open one and more sophisticated quantum-mechanical
treatment can yield more authoritative results.

The possibility that the crystal field arising from the fcc environment
can break the I, symmetry and activate some of the silent modes was not
considered in this chapter. There is, however, an experimental evidence [14],
that this effect is visible in the spectrum. Namely, the evidence comes from the
fact that some of the modes disappear above 260 K, where Cgq start to rotate.
It is difficult to qualitatively assess this mechanism. Mostly because the van
der Waals forces acting between two Cgg molecules in a crystal environment

are at least 100 times smaller than the covalent forces between the C atoms. A
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naive estimate would lead to the crystal field perturbation that yields modes
with the intensities by a factor of 0.0001 smaller than the first order intensities,
while experimentally seen weak modes have intensities of the order of 0.1 to
0.001 of the first-order modes. Nevertheless, a realistic calculation (e. g., with
the intermolecular potential of Lu et al. [36]) is required to conclude on the

role of the crystal environment in the IR spectrum of Cegp.
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Chapter 2

Vibrational Properties of Amorphous Silicon

2.1 Introduction

This chapter examines vibrational states in glasses (the term glass will be
used to denote amorphous solids in general, though in experimental literature
this term is reserved for amorphous solids quenched from melt). In the absence
of any unifying principles in the physics of vibrations in glasses, our approach

is to investigate a model system—amorphous silicon.

Amorphous silicon is an important electronic material (e.g., when enriched
with hydrogen atoms it is used for solar cells). Its modeling is attractive for
several reasons. (1) There are relatively strict constraints on its structure. The
majority of atoms form tetrahedrons (as in silicon crystals) with randomized
bond angles, but almost unvaried bond lengths. The structure factor of amor-
phous silicon has been measured and can be compared with a calculated one to
support or reject a model. In fact, there already exists a numerical recipe (the

Wooten-Winer-Weaire algorithm [1]) for creating a realistic glassy structure
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with tetrahedral coordination. (2) Many empirical potentials simulating the
covalent bonding between silicon atoms have been suggested. One can choose
according to one’s needs. We use the Stillinger-Weber potential [2] which is
simple and realistic. This potential (a) is short ranged, (b) anharmonic, and
(c) its defects are well established [3, 4, 5] (e.g., the frequencies of the op-
tic modes are overestimated by 15%). (3) Amorphous silicon is an elemental
system. Qualitative analysis of numerical results is therefore easier than for
more complex materials. In addition, models of amorphous silicon can be ex-
tended to describe glassy alloys like SiyGe;_, to study, for example, the role
of extrinsic mass disorder in the vibrations of glasses. Once the qualitative
analysis is made, one can conjecture about its generalization to other glasses
as well. We have good reasons to believe that many of the results in this
chapter are valid for other semiconducting and insulating glasses (in metallic
glasses the interatomic forces are long ranged so it would not be appropriate
to extend our results there). (4) Crystalline silicon is a well studied material
both experimentally and theoretically. It provides a benchmark when ana-
lyzing numerical data on amorphous silicon. When possible, calculations are
performed in parallel for both crystalline and amorphous cases, to explicitly
show the correlation between structure and vibrational dynamics.

There are also disadvantages in considering amorphous silicon. Many
experimental data are still lacking. For example, the thermal expansivity of
amorphous silicon has been measured only once and only at one temperature.
Sound attenuation has not been measured at all. The reason is that amorphous

silicon can be prepared in thin films only (e.g., by ion-beam sputtering); it
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is difficult to measure on thin films. Also, at very low temperatures (less
than 1 K) amorphous silicon behaves differently from other glasses. Excessive
degrees of freedom (in comparison with crystals) have been measured for the
majority of glasses in this temperature range. A generally accepted (but not
understood) idea is that there are local double-well-like potentials with random
parameters, distributed throughout a glass. These excessive degrees of freedom
have not been observed in amorphous silicon (a little excess in specific heat is
caused by dangling spins). In any case, the finite size of our models does not
allow us to explore such low temperatures.

Complex structure should be reflected in complex vibrational dynamics.
At very low frequencies the vibrational states have large enough wavelengths to
not see (microscopic) structural defects. The modes are acoustic-like phonons
(sound waves). Scattering of the phonons from (hypothetical) tunneling states
of the double-well potentials seems to explain many unusual properties of
glasses at low temperatures. At higher frequencies the phonons interact with
defects. If the interaction is resonant (i.e., the phonon frequency matches the
frequency of a particular defect), it leads to a new type of modes—resonance
modes. If the interaction is elastic (Rayleigh scattering), the modes main-
tain their wave character until their mean free path ¢ becomes comparable to
their wavelength A\. The “¢ &~ \” is the loffe-Regel limit [6], beyond which
one cannot speak of waves any more. Wave vector and polarization become
invalid concepts. Instead, the corresponding modes have zero group velocity
and transfer energy diffusively rather than ballistically. We call the modes

diffusons. At very high frequencies, in the tail of the spectrum, modes be-

35



gin to localize. Numerical calculations confirm that only a few percent of
vibrational modes are localized (we call them locons). Section 2.2 introduces
the above spectrum of vibrations for amorphous silicon. A clear connection
between structure and spatial characteristics of different modes is made. In
particular, the correlation between resonant (localized) modes and groups of
under(over)coordinated atoms is established.

Based on the above picture, Allen and Feldman [7, 8] have developed a
theory of heat transport in glasses (see also [9]). In crystals heat is carried
by ballistically propagating phonon wave packets. The coefficient of heat con-
ductivity is finite due to anharmonic interactions between phonons (umklapp
processes). This mechanism does not work for glasses since ballistic propaga-
tion is restricted to low-frequency phonons. Instead, the majority of modes
are nonpropagating—their group velocity is zero. Wave packets created from
these modes only diffusively spread out (from here the name diffusons). Heat
is therefore transferred by diffusion. The heat conductivity coefficient is finite
even at harmonic level; the role of anharmonicity is to achieve a steady state
with a local temperature, by redistributing vibrational energies among the
states. Allen and Feldman used a Kubo formula for heat transport to show

that heat conductivity « can be written as

where (; is the heat capacity of the :th mode and D; is the “mode diffusivity.”
The mode diffusivity is an intrinsic property of the ¢th normal mode; it can

be calculated by using only harmonic eigenstates. In addition D; provides an
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unambiguous criterion for localization. Locons have D; = 0 and thus make no
contribution to . To support their theory Feldman et al. [8] have calculated &
for models of amorphous silicon. The results are in agreement with experiment.

The present work goes beyond harmonic approximation. It is an extension
of the work of Allen and Feldman in that various properties where anharmonic-
ity is explicitly manifested are calculated. Section 2.3 introduces the concept
of vibrational relaxation times in glasses. Relaxation times are needed to know
how fast a system of (almost independent) vibrational modes achieves a steady
state. A small perturbation (such as a monochromatic laser pulse) shifts the
population of a particular mode from its equilibrium value. Perturbation the-
ory gives a recipe how to evaluate the time needed for the mode to return
back to equilibrium. We apply the perturbation formula for our model of
amorphous silicon. The relaxation times are evaluated for different modes and
different temperatures. The results show that vibrations in glasses decay on
picosecond time scales and the times decrease with increasing frequency. This
is independent of the character of the modes under consideration. Locons, dif-
fusons, and low frequency phonons have similar relaxation times. This is little
surprising. Decay mechanism must be different for different modes. Locons
are spatially localized so the probability, for example, of a locon to decay to
two other locons is very small. Indeed, the fracton model [10] used this as
an assumption that such three-locon decay processes can be neglected. The
resulting picture then seemed to be in accord with the experiment of Scholten
et al. [11, 12] that indicated nanosecond time scales for the relaxation times

and an exponential increase of the times with frequency. Our realistic calcula-
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tion shows that the experiment has been misinterpreted. Unfortunately we do
not have a plausible explanation for the experimental observations. As for the
fracton model, Sec. 2.4 explicitly shows that three-locon interactions cannot
be neglected. To consider decay rates, in addition to the probability of a pro-
cess to occur one has to consider the magnitude of the corresponding matrix
element. Simple scaling shows that if the probability is small the magnitude

is large. This is why different modes have similar decay rates.

There is much to be learned about the modes from the study of individual
decay processes (not summed over final states continuum). In Sec. 2.3 we show
that in contrast to propagating phonons, diffusons do not have other selection
rules than energy conservation. On the other hand the decay mechanics of
locons is much more complex. Decay of a locon to two others is selective
in that the three modes must spatially overlap. If a locon decays to another
locon and a low-frequency phonon, the situation can be described as a “phonon
assisted hopping.” If the phonon in the decay is not of a low frequency, the
two participating locons can overlap and we cannot speak of “hopping.” Such
a decay has different rules. Consequencies of the complex decay mechanics in

transport process are yet to be explored.

Another interesting anharmonic property is thermal expansion. Although
there exist plenty of experimental data on the subject, little is known about the
physics behind this phenomenon (again, in crystals the situation is well under-

stood due to the simplicity of their vibrational spectrum). Thermodynamics
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relates thermal expansivity a with mode Griineisen parameters ~;:

The Griineisen parameters measure how sensitive vibrational frequencies are
to volume change (7, = —dInw;/dIn V). To the lowest approximation v, are
T independent and « follows temperature dependence of specific heat. It is
constant above Debye temperature and in crystals varies as 7% at low tem-
peratures. In glasses the low temperature behavior depends on glass. It can
be negative or positive, typically with linear 7" dependence. Such a behavior
cannot be explained in terms of the tunneling model and several schemes have
been devised to explain it. The Griineisen parameters of low-frequency modes
have been conjectured to have anomalously large negative values. Again, there
is no agreement in the literature about the origin of these values. More impor-
tant is the room temperature behavior of «. It has been found that « is very
sensitive on preparation method. In Sec. 2.5 we try to explain this. We use
perturbation theory to evaluate ~; for the modes in amorphous silicon. We ob-
serve that resonance modes have unusually large negative ; (up to -30; typical
“phonon” value is around 1). This may explain some of the low-temperature
properties of a. In addition, different models give slightly different «. This
is related to internal strain. If volume changes, the new “rescaled” positions
will not, in general, be the new equilibrium positions (in crystals with atoms
at centers of symmetry they would be). At the new volume the atoms further
relax. This causes large changes in the frequencies of the resonant modes.

Different samples have different concentrations of soft regions where resonant
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modes have largest amplitude. This leads to the measured sample dependence

of a.

The chapter is concluded by a brief account of our current projects. The
topics in Sec. 2.6 have little in common (besides that they deal with vibrations
in glasses). First we try to establish a connection between random matrix the-
ory and diffusons. It is shown that diffusons can be indeed described as eigen-
states of a random matrix (with a proper symmetry), indicating a possibility
to develop an analytical model for these states. On the other hand, locons
show no sign of “random-matrix” behavior. Their neighboring frequencies are
almost uncorrelated. This is well known: neighboring locons spatially repel
each other. The repulsion then inhibits spectral correlations. Next we evalu-
ate the sensitivity of vibrational frequencies to boundary conditions. Thouless
showed that this sensitivity is connected (via a kind of uncertainty principle)
to mode diffusivity. What Thouless showed for electrons we try to establish
for vibrations. The last topic in Sec. 2.6 deals with sound attenuation. Only a
draft of a general theory of the vibrational contribution to sound wave damp-
ing is presented. We start from a Kubo formula and a kinematic expression for
the momentum-current operator to arrive at a perturbation result suitable for
numerical calculations. Surprisingly, in contrast to heat conductivity, sound
attenuation of glasses is a purely anharmonic effect. Sound energy is dissipated
in the relaxation process where vibrations and equilibrium atomic positions try

to find a local steady state at a given value of (sound wave determined) strain.
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2.2 Model of Amorphous Silicon

2.2.1 Structure

Our model is based on the algorithm developed by Wooten, Winer, and
Weaire (WWW) in 1985 [1]. The WWW algorithm applied to silicon, starts
with atoms arranged in a diamond cubic lattice (silicon crystal with the lattice
constant 5.431 A, see Fig. 2.1). A random-network structure of amorphous
silicon is obtained in two steps. First, bond transpositions are performed
on randomly chosen pairs of second-neighbor bonds. In the transposition,
two bonds are “cut” and a new pair of bonds, each containing atoms from
both original bonds, is formed. The resulting configuration is relaxed to a
nearest local minimum of an interatomic potential (usually of the Keating
type with periodic boundary conditions applied). This step is repeated many
times (of the order of N, the number of atoms in the sample). In the second
step, simulated annealing brings the sample to an energy corresponding to a
temperature T' &~ 0 K. (The first step treats the sample as if it were at 7' = oo;
structures of different energies have equal probability to occur.) The annealing
proceeds via topological relaxations: two bonds are transposed at random on
a trial basis, and the energies of the old and new structures are compared. If
the new structure has a lower energy, it is accepted; if the energy is higher
by AE, the new structure is accepted with the probability exp(—AFE/kgT),

where kg is the Boltzmann constant.

To make the WWW structure suitable for realistic calculations, we have to
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Figure 2.1: Input to the WWW algorithm: 216 silicon atoms in a diamond

cubic structure.
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add realistic interatomic potentials. From more than 30 potentials suggested
in literature, we take the Stillinger-Weber (SW) potential Vsw [2], suggested
originally for silicon liquid. The SW potential is relatively simple and contains
relevant physics. It consists of two- and three-body terms. The two-body

(bond-stretching) term is

Va(r) = ef(r/s), (2.3)

where e = 2.1675 eV, s = 2.0951 A, and the function f(z) is defined as

F() = A(Bs~" — 1) exp (r ! q) , (2.4)

with the parameters A = 7.05, B = 0.60, p = 4, and ¢ = 1.80. Potential V5(r)
has minimum at r &~ 2.35 A, the interatomic distance in silicon crystal. The
three-body (bond-bending) term between atoms a, b, and ¢, that form angle

f with the vertex at a, has the form
Va(raby Tac, 0) = €f(rap/8,7ac/s,0). (2.5)

The distance from a to b (¢) is denoted as rq; (74.), and the function f(z,y,0)

is given by

flz,y,0)=1 <cos€ + %) exp ( I + L) . (2.6)

r—q Yy—4q
The parameters [ = 21.0 and ¢ = 1.2. The three-body 2.5-2.6 term ensures
stability of tetrahedral coordination (in a tetrahedron cos@ = —1/3). After
the WWW network is built, a relaxation is made to a nearest local minimum

of the SW potential. To minimize pressure, the sample length L is allowed
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to change. Typically a pressure below atmospheric was achieved, but we also
performed calculations with a model under 1 kbar of negative pressure. The
calculations show that some of the modes (namely the resonance ones, see Sec.
2.2.2) are very sensitive to pressure (and structure in general). We will show
that this behavior of resonance modes is responsible for considerable sample
sensitivity of thermal expansion (Sec. 2.5) and sound attenuation (Sec. 2.6)
of glasses.

The resultant WWW random network preserves the bond length (~ 2.35
/O%), but randomizes the bond angles (&~ 109°). This is a requirement of exper-
iment: neutron diffraction measurements showed that in amorphous materials
with covalent bonding the bond length fluctuations are weak. On the other
hand, the bond angles fluctuate by up to 20% around their crystalline values.

In the following sections we use the random-network models with 216 and
1000 atoms (occasionally also with 4096 atoms [13]). Table 2.1 lists selected
properties of these models and of the crystalline silicon with the SW inter-
atomic potential. The table shows that the 216-atom model is more “crys-
talline” than the 1000-atom model. This is because the latter was built to
be topologically less constrained: it contains occasional fourfold rings. Both
models are less dense than silicon crystal. Also, bulk modulus is lower in the
amorphous case. The reason for this is internal strain: under volume change,
atoms in amorphous silicon (as opposed to crystalline silicon) further relax to
a new potential minimum corresponding to the new volume. We will show in
Sec. 2.5 that internal strain has similar consequencies for thermal expansion.

Figure 2.2 visualizes the 216-atom model. The bond-angle randomness is
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Model NV Energy/atom B Wmax WOmin we o
(10%® /m?) (meV) (10 GPa) | (meV) | (meV) | (meV)
216 4.942 -4.123 9.97 78.34 7.18 12.25
1000 4.785 -4.102 8.86 82.19 4.13 7.43
crystal 4.994 -4.334 10.0 73.60 - -

Table 2.1: Selected characteristics of the amorphous silicon models and silicon
crystal with the SW potential. N/V is number density, B bulk modulus,
Wmar Maximum vibrational frequency, w,,;; minimum vibrational frequency,

and w¢

min

minimum vibrational frequency of a crystal with the same V.

evident, as is the preservation of the bond length. Tt is, however, difficult to
answer the question of how realistic our models are, based on the figure alone.
We therefore compare in Fig. 2.3 the structure factor S(Q) and the pair
correlation function g(R) of the 1000-atom model with the neutron diffraction
measurement by Kugler et al. [14]. The agreement is excellent. All the peaks
in S(Q) are reproduced and the distribution of the first- and second-neighbors
displayed in g(R) matches the experiment. The third- and higher-neighbors

are not well resolved. This is typical of glasses: the long-range order is lost.
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Figure 2.2: The WWW output structure relaxed to a nearest local minimum

of the SW potential: a 216-atom model of amorphous silicon.
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Figure 2.3: (A) Structure factor S(Q) and (B) pair-correlation function ¢(r) as
calculated by using the 1000-atom model (solid line) and measured by neutron

diffraction [14] (dashed line).



2.2.2 Vibrations in Glasses: Fundamentals

This subsection is a brief discussion of some of the properties of the har-
monic vibrational states found in our models. Vibrational frequencies and
eigenstates were obtained by numerical diagonalization of the 3N x 3N force-
constant matrix F,, 3. Here a denotes atom and o« a Cartesian direction z,
y, or z. The matrix F,, s is formed from the second derivatives of the SW

potential with respect to atomic displacements u,, around equilibrium:

OVsw

m. (2.7)

Faa,bﬁ =
The matrix equation
Faapsers = wicy, (2.8)

then defines the frequencies w; and vibrational displacement pattern e of

mode :. There are N eigenstates for a model with N atoms. The eigenstates

e! , are normalized to unity:

=1. (2.9)

Because of periodic boundary conditions, the three lowest frequencies vanish;
they correspond to uniform displacements along the three Cartesian coordi-
nates. In crystals it suffices to take instead of N the number of atoms in a
primitive cell. Phase coherence allows to find solution everywhere else. In
glasses this is not possible. There is no phase coherence and one must diago-
nalize matrices with N being the total number of atoms.

Figure 2.4 shows the calculated vibrational density of states (DOS) for the

1000-atom model of amorphous silicon, and for crystalline silicon. The latter
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Figure 2.4: Calculated vibrational density of states (DOS) (A) for the 1000-

atom model of amorphous silicon and (B) for silicon crystal with the SW

potential.
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DOS was calculated by using the SW interatomic potential and the tetrahe-
dron method with 1772 tetrahedra in the irreducible wedge of the Brillouin
zone. The two spectra are very similar. This is because the interatomic forces
forming the force-constant matrix Fj, ;3 are short ranged, so they reflect local
atomic arrangements more than global structure. And both amorphous and
crystalline silicon have tetrahedral coordinations. The absence of a long-range
order in the amorphous case is reflected in the broadening of the van Hove
singularities. Another difference between the two spectra is that the maxi-
mum frequency wy,q. (see also table 2.1) is higher in the amorphous case. We
will see that this is because the high-frequency modes in amorphous silicon
are localized at overcoordinated atoms that form a stiffer environment. The

vibrational spectrum has a finite lower limit w,,;,, since we are dealing with

C
men?

finite-size models. In a finite crystal the lower limit w corresponding to the
(1,0,0)2x /L transverse acoustic phonons, would be higher: w¢ . > wnin (see
table 2.1). Again, this is because there are topological defects in amorphous

structure. But now the defects are “soft,” formed by undercoordinated atoms.

An important issue in the physics of vibrations in glasses is localization
(in Anderson’s sense [15]) that arises due to topological imperfections. What
portion of vibrational eigenstates is localized is still a matter of discussion. For
example, the fracton model [10] postulates that the majority of the states are

localized. This model suggests that w, ~ 5 meV ! for amorphous silicon, where

Tt is customary to call the frequency that separates the region of localized from

the region of extended states, the mobility edge w..
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maximum vibrational frequency w4, 1s above 70 meV. On the other hand,
realistic model calculations indicate that the majority of modes are extended.
For instance, our calculations give w, =~ 71 meV, i.e., only 3% of the modes are
localized. This value of w. has been confirmed in the 4096-atom model [13],

and similar results were obtained with other models of glasses as well [16, 17].

A good indicator of localization is the inverse participation ratio 1/P. For

mode ¢ it is defined as

Z-4
€,

/P =3

a

(2.10)

If 7 is localized at M atoms, the normalization condition 2.9 gives ¢! ~ 1/v/M
and 1/P ~ 1/M. For extended modes (M ~ N) one gets 1/P ~ 1/N, while
modes localized at one atom have 1/P ~ 1. Figure 2.5 shows 1/P for the
1000-atom model. The localization transition is clear. The mobility edge is
w. &~ 71 meV and the comparison with DOS reveals that localization occurs
for only 3% of the states. Figure 2.5 suggests that vibrations are localized also
at the lower part of the spectrum. We will show that the corresponding modes
are actually extended, but have unusually large amplitudes at certain regions.
An example of a (genuinely) localized mode is shown in Fig. 2.6. Shown are

atoms a such that |ea|2 > 0.2 |em,m|2, where |em(m|2 = max, <|ea|2).

What makes modes localize? We already mentioned (and Fig. 2.6 seems
to confirm) that localization is correlated with topological defects. As an at-
tempt to quantify this correlation we introduce the mode average coordination

number z;. For each atom a we calculate its coordination number 2z, as the
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Figure 2.5: Calculated (A) inverse participation ratio 1/P and (B) DOS for
the 1000-atom model of amorphous silicon. The vertical line is the mobility

edge w.: modes with w > w,. are localized.
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Figure 2.6: The highest-frequency vibrational mode in the 1000-atom model
of amorphous silicon. The mode is localized around the fourfold ring—a topo-
logical defect not found in silicon crystal. Only the atoms with the largest (see

text) vibrational amplitudes are shown.
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sum

> w(|ry — 1)). (2.11)

b
The function w(x) has the value one for 0 < x < rq, is linearly decreasing as
(ro —x)/(rg — 1) for 1y < @ < ry, and is zero for @ > ry. We choose as rq
and 7, the nearest neighbor (2.35 A) and the second nearest neighbor (3.84

A) distance in crystalline silicon. Then

i 2
e

a

Z; = E Za

a

(2.12)

If a localized mode ¢ sits at a defect whose atoms have typically different z,
than average, its z; will also deviate from normal. The result isin Fig. 2.7. The
majority of modes have coordinations (as defined by Eq. 2.12) between 4.6 and
4.8. The localized modes, however, are formed at atoms with coordinations
greater than 5. This result shows that modes are indeed localized at defects
whose atoms are more packed together than on average. Different characters
of defects then cause the dispersion of values of z'. Such a dispersion will be
also seen in the mode Griineisen parameters calculated in Sec. 2.5.

What happens at the lower part of the spectrum is currently an active
area of research. There is no doubt that the majority of these modes are like
low-frequency acoustic phonons with a wave vector and polarization (after
all, glasses do transmit sound waves). Here we are interested rather in the
modes that have unusually large P, comparable to high-frequency localized
modes. Several works (including ours) suggested that the peculiar modes at

the lower part of the spectrum are resonance (or quasi-localized) modes; they
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Figure 2.7: Mode average coordination number z; for the 1000-atom model
of amorphous silicon. The increase and dispersion of z* above w, shows that

vibrational modes are localized mainly at overcoordinated atom:s.
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are extended, but have an unusually large amplitude at a particular group of
atoms. The resonance modes were first described by Kagan and Iosilevskii [18],
Brout and Visscher [19], and Takeno [20] in the studies of vibrations of a heavy
impurity in a crystal lattice. The impurity vibration (of a very low frequency)
resonantly couples with similar-frequency phonons of the host lattice. The
physical picture is similar to the one of a quantum-mechanical particle in a
finite potential well: the probability to find the particle in the well is much
greater than finding it outside the well, but there is still a finite probability to
find it at infinity. The role of potential well (or heavy impurity) is in glasses
played by groups of undercoordinated atoms. And how do we know that our
finite-size models give resonance (as opposed to localized) modes? Figure 2.8
shows the scaling of P with N for the 216-, 1000-, and 4096-atom model.
From Eq. 2.10 one gets P ~ N for extended modes, and P is N independent
for localized modes. Figure 2.8 plots P/N versus w for different N. The
graph confirms that P/N does not depend on the sample size for the shown
frequencies. The corresponding modes are therefore extended. And because
1/P reveals the high amplitude of these modes at a small number of atoms,
the modes must be resonant.

A nice way to see the connection between undercoordinated (overcoordi-
nated) groups of atoms and resonance (localized) modes, is to calculate g(R)
with origin atoms (R = 0) having the largest amplitudes for a given mode.
The result of such a calculation is in Fig. 2.9. The solid lines indicate both
¢g(R) and the number of atoms within R from origin (the distinction should

be clear: the latter is steadily increasing) for (A) localized modes and (B)
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for the low-frequency modes.
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Figure 2.9: Calculated g(R) for localized modes (A) and resonance modes (B).
In each case only the atoms with the largest vibrational amplitude were taken
as the origin atoms R = 0. The dashed lines show the case where all the atoms

are considered.
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resonance modes. The dashed lines denote the same, but averaged over the
whole sample. Figure 2.9 (A) shows that the first neighbor lies closer than on
average. The coordination is therefore higher for the atoms that trap localized
states. For resonance states, Fig. 2.9 (B) indicates undercoordination. The
first neighbor is farther than on average. However, the gap between the first
and second neighbor is now partially filled. The solid line shows that the num-
ber of neighbors up to second is larger than on average. The deficiency in the
distance to first neighbor is thus compensated by the number of the neighbors.
This is also the reason why the undercoordination is not seen in the graph of
z;, Fig. 2.7.

Finally, the majority of vibrational eigenstates in our models are modes
that are neither localized nor propagating (nor resonant). They occupy the
part of the spectrum roughly between 15 meV and w. ~ 71 meV. The proper-
ties of these modes are quite uncommon. They have no wave vector or polar-
ization. Wave packets formed by the superposition of these modes spread out
diffusively rather than ballistically. The center of the wave packet does not
move: the group velocity is zero. Atomic vibrational displacements point in
random directions and there is no coherence connecting the displacements in
different regions of space. Locally, however, the displacements are correlated
(there is still frequency distinguishing between different modes). A good mea-

sure of the short-range correlations is the phase quotient, introduced by Bell

and Hibbins-Butler [21]

i i
_ Yo<ap> €€

B Z<a,b> |eie§>| .

PQ(i) (2.13)
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The summation is over all nearest neighbors < a, b >, that we take the atoms
within the distance of 2.5 A (roughly the end of the first-neighbor peak in the
pair-correlation function g(R) in Fig. 2.3) from each other. If the displacement
of the atoms a and b is close to parallel (acoustic-like vibration), PQ would
be close to 1. On the other hand, for an antiparallel displacement (optic-like
vibration), P@Q approaches —1. Figure 2.10 displays this behavior. Low-
frequency modes have “acoustic” properties, while high-frequency modes are
like optic phonons. If not for the discontinuous jump at 30 meV and the
dispersion of P() values above the mobility edge, there would be an almost
linear decrease of P() with increasing frequency. The dispersion of values for
localized modes has the same origin as the dispersion of their z; values, Fig.
2.7. As for the jump at 30 meV, this is less clear. DOS (Fig. 2.4) has a dip
in this region and 1/P (Fig. 2.5) indicates the corresponding modes might be
resonant. P() increases by about 0.5 after the dip; the slope seems unchanged.

To simplify further discussion, we propose an improved nomenclature
for the vibrational states in glasses. In a crystal, vibrations are “phonons,”
which are extended and propagating. Although it is common to use the term
“phonon” in glasses, there is no agreement as to whether the term should be
restricted to propagating states, so we prefer the generic term “vibrons” (v).
Vibrons can be either localized or delocalized (in Anderson’s sense [15]). For
localized states we use the term “locon” (/), and for delocalized (extended)
“extendon” (e). Finally, the extended acoustic-phonon-like vibrations at low
energies can be assigned wavelengths, wave vectors, and velocities, and we call

them “propagons” (p), as opposed to extended vibrations called “diffusons”
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Figure 2.10: Calculated P(@) for the 1000-atom model of amorphous silicon.

The vertical line is the mobility edge w..
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VIBRON

EXTENDON LOCON

PROPAGON DIFFUSON RESONANCE
MODE

Figure 2.11: Family tree of harmonic vibrational eigenstates in glasses.

(d), which have none of these. We also include resonance modes among ex-
tendons. Resonance modes are extended with a large amplitude at groups of
a small number of atoms. This nomenclature is also shown in Fig. 2.11.

Vibrational profile of selected vibrons is in Fig. 2.12. We plot the quantity
U*(R), defined for mode i as

S leil 8 (R — |r, — ro|)
UXR) = .
(R) 200 (R —|ry —1ol)

(2.14)

K3
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emsemen» resonant (w=6.5meV, P=75)

0 2 4 6 8 10 12
R (A)
Figure 2.12: Calculated amplitude profile of selected vibrons for the 1000-atom
model. The extendons (diffuson and resonance mode) have typical amplitude
of U? ~ 1/N ~ 1073. The locon’s amplitude decays exponentially with dis-
tance. The participation ratio P indicates at how many atoms the vibrational
amplitude is highest. The lines are eye guiding only, they do not have a special

meaning (our structure is discreet: there is certainly no vibrational activity

between the origin and the first-neighbor atom at 2.35 A)
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Here rg is the radius vector of an atom with maximum amplitude |ei|2. Equa-
tion 2.14 gives an average square amplitude of a vibration at distance R from
ro. For extendons one expects roughly constant U? at the value of 1/N, while
locons should have their square amplitude decaying exponentially with increas-
ing R. This is indeed seen in Fig. 2.12. The profile of the resonance mode
at w=6.5 meV reveals that this mode has a very large amplitude at the origin

atom, while its amplitude does not exponentially decay as in the case of locons.

2.3 Anharmonic Decay of Vibrational States >

Scholten et al. [11, 12] have found long relaxation times of vibrational
states (VS) in amorphous silicon and hydrogenated amorphous silicon, at lig-
uid He temperatures. Hot charge carriers produced by laser pulses excite
VS during their thermal relaxation towards the conduction band edges, and
the time dependence of the VS populations is measured by anti-Stokes Ra-
man spectroscopy. Their main observations are (a) the populations of high
frequency VS live about 10 ns, and (b) the relaxation times increase as the
frequency increases. The situation in crystals is very different: optic phonons
decay on picosecond time scales and the lifetimes of phonons typically decrease

with frequency, as new decay channels become available.

Several models of atomic vibrations in glasses exist. (i) The “soft poten-

tial” model [22, 17] introduces a system of random soft anharmonic atomic

2]. Fabian and P. B. Allen, Phys. Rev. Lett. 77, 3839 (1996).
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potentials and accounts well for low temperature and frequency properties of
glasses. (ii) The “fracton model” [10] emphasizes an assumption that, except
at low frequencies, the VS in glasses are localized. (iii) The “diffuson” model
[7, 8] exploits atomistic calculations which have the property that, except for
at low frequencies and at very high frequencies, VS are neither localized nor
propagating, but are intrinsically diffusive (see also Ref. [16]).

Until now there has been no careful numerical study of anharmonic decay
in glasses. The present paper offers such a calculation which applies most
directly to model (iii), but which is extended to cover model (ii) as well. It has
been argued that the simplest explanation of the inhibited thermalization seen
in refs. [11, 12] comes from model (ii) via an inhibition of anharmonic decay of
localized states. Our calculations show that, contrary to this argument, both
models (ii) and (iii) give anharmonic decay rates comparable to or faster than
in crystals. There is little likelihood that model (i) can inhibit thermalization,
so the experiments [11, 12] remain unexplained.

The decay rate (inverse lifetime) 2I'(j) of the mode j with the frequency

w(j), at a temperature T, is given by [23]

M) = il ST G+ (k) 4 n(DISe() = (8) ()
4 (k) — n(D]8() + (k) - w(D)]) (2.15)

Here V(j,k,1) are the coefficients of the cubic terms in the expansion of the
interatomic potential in normal mode coordinates, and n(j) are the Bose-
Einstein occupation factors [exp(hw(j)/kT) — 1]7'. Because of the lack of

translational invariance, the VS in amorphous systems can be labeled by their
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frequency only. For phonons in crystals, j denotes both the band index A and
the wave vector Q, and the wave vector conservation up to a reciprocal lattice
vector is a selection rule in V(j,k,1). Two different processes are contained
in this equation: (a) processes v — v'v” where a vibron splits into two with
temperature factor 1 + n’ + n”, and (b) processes vv’ — v” where vibron v
absorbs a thermal vibron v’ with temperature factor n’ — n”. Delta functions
ensure energy conservation. At zero temperature only the (a) decay exists and
at high temperatures the decay grows proportionally to the temperature.

As a test for the SW potential we have carried out the calculation of
the decay rates 2I'(Q = 0, ) of the zone-center optic phonons in crystalline
silicon. In this case only processes (a) contribute (frequencies of the Q=0
phonons are the highest in the vibrational spectrum). The state j in Eq. 2.15
is (0,)), state k is (q,\’"), and by crystal momentum conservation, not found
in glasses, state [ is (—q, A”). The sum goes over (qA’A”) for N q vectors in

the Brillouin zone. The matrix element V(y, k,[) can be written as [23]

Vi k=Y OV e s o (2.16)
Js a,b,caBy auaaaubﬁauc’v\/m_a\/m_b\/m’ )

where V' is the potential energy of the system expressed in terms of the dis-

placements from equilibrium w,,, where « identifies components and a iden-
tifies atoms, which are of mass m,. ef; are normalized (Y5 |efs|> = 1) vi-
brational eigenvectors. For crystalline phonons egﬁ = é%eiq'Rb/\/N, R, being
equilibrium atomic positions and é% polarization vectors. Since interatomic

interactions are short ranged, the sum over atoms a, b, ¢ has ~ O(N) terms,

with phase factors ¢’4"®s multiplying to 1 and adding coherently. This gives
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Figure 2.13: Decay rate of the zone-center optic phonons in crystalline silicon
from the SW potential as a function of absolute temperature. The filled circles

are the experimental points from Ref. 10.

V(j,k,1)]* ~ 1/N and the factor of 1/N cancels with the N terms in the

Brillouin zone sum, giving a rate 2I" independent of N.

To sum over the q points in Eq. (1) we use the tetrahedron method with
1772 tetrahedra in the irreducible wedge of the Brillouin zone. Figure 2.13
shows the temperature dependence of the decay rate along with the experi-
mental values from Raman scattering [24]. At zero temperature our calculated
decay rate is 0.064 meV, as compared to 0.153 meV obtained experimentally

[24], and 0.059 meV [25] and 0.183 meV [26] obtained using the local density
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approximation. Calculated decay rates are by a factor of 3 smaller than ex-
perimental values, in line with calculations of the high temperature thermal
expansion [3] and pressure dependence of elastic constants [5], which are un-
derestimated by the SW potential by less than a factor of 2. We believe that
these discrepances are a quantitative detail, not important to our qualitative
conclusions.

Information about the relative importance of the spectral regions to the
total decay rate can be obtained from the spectral density of the decay rate.
It is given in Fig. 2.14 for the off-diagonal (different polarizations of the decay
products) decay processes, along with the vibrational density of states. Shown
is the spectral density of the decay rate of the zone-center optic phonons. The
dominant decay mechanism involves one LA and one TA mode (~93%), while
the diagonal LA + LA (Klemens) channel gives a relatively small contribution
(=7%). This follows from the trends in the vibrational density of states, as
observed earlier [25, 26].

Because diffusons dominate the spectrum, the decay rate 2I" is dominated
by d — d'd” and dd’ — d”. The number of contributing terms in the sum in
Eq. 2.15 is ~ N? rather than ~ N as in crystals. But the extra factor of N
is compensated by a matrix element V(j, k,{) in Eq. 2.16 which is smaller by
1/v/N. This happens because the coordinates of e/ have the same magnitude
as in crystals, but the relative phases of e/, e*, and e’ are random. The sum
is now incoherent and thus smaller by 1/y/N. To confirm this incoherence, we
show in fig. 2.15 the calculated distribution of anharmonic matrix elements,

which is a perfect Gaussian in accord with the central limit theorem for the
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Figure 2.14: Calculated off-diagonal spectral density of the decay rate of the
zone-center optic phonons in ¢-Si (solid line), and the vibrational density of

states (dashed line).
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addition of random numbers (compare with the crystalline case Fig. 2.14).

Because of the discreteness of the vibrational energy levels in our finite
system, we represent the delta functions in the Eq. 2.15 by normalized rectan-
gles of the widths 0.4 meV, centered at the frequencies w(j). On average there
are 3.6 modes in a rectangle. An increase of the rectangle widths increases the
computation time without a notable change in results. Smaller values enhance
the noise. In Fig.2.16 we show the calculated decay rates as frequency func-
tions at 10 and 300 K. The curves were convolved with rectangles to suppress
the remaining noise. The decay rates 2I'(j) are of order 0.01 w(j), which con-
firms the applicability of lowest order perturbation theory. For lifetimes one
thus obtains picoseconds in contrast to the experimentally claimed nanosec-
onds [h/(1 meV) = 0.7 ps]. The decay rate follows the joint two-mode density
of states [}-,, 6 (w —w(j) — w(k))] curve, even beyond the mobility edge (in-
dicated by the vertical line). At higher temperatures the midfrequency region
becomes more pronounced due to the appearance of processes (b). The high
temperature shape of the decay rate frequency dependence can be shown to
follow a combination of the joint and difference two-mode density of states.
Compared with the decay of the optic phonons in crystalline silicon, the decay
rates of the amorphous silicon VS just below the mobility edge are larger by
a factor of 3. Considering the bond angle and other structural disorder in
amorphous silicon, this seems reasonable.

The locons in our system kinematically decay mostly to two diffusons,
[ — d'd". If N; atoms participate in the vibration of locon j, the incoherent

sum Eq. 2.16 contains O(N;) terms. Since the locon eigenvector scales as
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Figure 2.15: (a) Distribution of the anharmonic matrix elements V' (7, k, 1) for
the decay of a sample of three extendons j of w(j) between 65 and 68 meV. The
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the other frequency is given by the energy conservation w(j) = w(k)+w(l). (b)
The number of occurences of the anharmonic matrix elements from (a) shows
their Gaussian random character due to lack of selection rules other than the

energy conservation.
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¢l ~1/,/N;, the terms containing N; cancel and |V (j,k,1)|> ~ 1/N?, as for
the decay of diffusons. This explains our result that beyond w. no qualitative

changes in 2I" occur.

We now ask what changes would occur in decay rates if a greater propor-
tion of the states were localized. To accomplish this we model a hypothetical
alloy of silicon and heavy germanium (amorphous Si/Ge) by changing the
masses of 50% of the atoms chosen at random, to twice the germanium mass.
The interatomic potential is unchanged. Harmonic vibrational properties of
this systems were studied [8], and it was shown that the mobility edge shifts
down to 31 meV. The extrinsic mass disorder increases the portion of locons.
Figure 2.17 shows the decay rate frequency functions at two temperatures,
10 and 300 K. The mobility edge is indicated by the vertical line at 31 meV.
Again, there are no dramatic changes beyond the mobility edge, the curves ba-
sically follow the trends in the joint, and the joint plus the difference two-mode
density of states. Modes with frequencies above 62 meV are like the modes
of the fracton model (ii), as their decay to two extendons is kinematically for-
bidden. Calculations based on the “fracton” model with the assumption that
the decay to two other locons is negligible lead to the exponential decrease of
the decay rates in this frequency region. We do not find any evidence for such
a behavior. On the contrary, the decay rates further increase. The following
argument shows that the assumption of negligible three locon interaction (and
the prediction of the decrease of the decay rates with increasing frequency) is

not correct. A detailed version of it will be given elsewhere [27].
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A key observation is that when most states are localized, then locons
are no longer dilute. Consider processes [ — ['l", II' — [". Let N; atoms
participate in the vibration of a locon j, similarly N and N; for locons k
and [. The matrix element Eq. 2.16 is nonzero only when the three locons
overlap. Whenever the locon j lies within the overlap of the locons k and [,
the scaling arguments give |V(j,k,1)|* ~ 1/N.N,. The overlap occurs with
the probability ~ N, N;/N?, since the modes come from different frequency
regions and their localization centers are uncorrelated. The average value of
|V(j,k,1)]* for these processes is then ~ 1/N? of the same order as for the
processes d — d'd", dd' — d", and | — d'd". The same results can be deduced
also for [ — d'l"”, ld'" — 1" (one of the participation numbers is set to N), unless
the two locons come from the same frequency region, where the localization
centers repel. In the “fracton model” extendon frequencies are much smaller
than those of locons, so |w; — wy| is small for states participating in [ — ¢€l”
or le/ — 1", Thus repulsion occurs and (if [ — 'l" and I’ — [" are neglected)
only long-range e-assisted hopping occurs. Estimates of the magnitudes of the
hopping processes are given in Ref. [10], where it is shown that the hopping
decay probabilities decrease with decreasing V;.

In conclusion, we have found that the high-frequency VS in a realistic
model of amorphous silicon decay on picosecond time scales, and at low tem-
peratures their lifetimes decrease as frequency increases. This is in contrast
to recent experimental claims that the modes decay on nanosecond scales
and their lifetimes increase as frequency increases. We have also shown that

contrary to previous ideas the interaction involving three localized modes is
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important for the decay of these VS. We remark that in the experiment the
average (nonequilibrium) population of the excited VS is 7(j) ~ 0.2 and the
VS are excited over the whole spectrum [12]. However, decay rates 2I'(j), Eq.
2.15, are defined for small deviations of single-frequency VS populations from

equilibrium. It is not clear that the experiment measures the same rates.

2.4 Decay of Localized Modes in Low-Mobility-

Edge Glasses *?

In harmonic approximation the VS will never equilibrate, but anharmonic
interactions are always present. What is the rate of equilibration in glasses?
Experiment [11, 12] indicates that at a liquid He temperature in a-Si (a) high
frequency (w > 10 meV) VS live longer as frequency increases, and (b) the VS
live on nanosecond time scales. In contrast, phonons in crystals decay faster as
frequency increases (the number of decay channels increases), and lifetimes are
picoseconds. Model (i) seems to agree with the experiment in the following
way. Locons [ can decay via three processes: (1) [ — p'p”, (2) [ — p'l" or
Ip) = 1", and (3) | — I'l" or lI" — [". Process (1) is kinematically forbidden
for high frequency locons with w; > 2wig. Processes (2) represent “propagon-
assisted hopping” between locons [ and I”. Because wy < (wi,wpm), wp & wyn,
and the locons [ and {” spatially repel each other [28]. As the frequency and

the inverse localization legth L=1 increases, the overlap between the locons

3]. Fabian, Phys. Rev. B 55, R3328 (1997).
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decreases and so does the hopping rate. Processes (3) have been neglected by
model (i) on the grounds of a small probability of three-locon overlap. Hopping
is therefore assumed to be the only locon decay process, and because it has
property (a) and can be adjusted to fit (b), the experiment [11, 12] seems to
be rationalized.

Recent numerical calculations on models (i) and (ii) ([27], see Sec. 2.3)
have shown that decay properties of both diffusons and locons are similar to
those of crystalline phonons. It has been argued [27] that the assumption of
the negligibility of (3) is incorrect and is the reason behind the discrepancy
between the numerical results and model (i) predictions. The experiment
[11, 12] therefore remains to be explained. In this section we show, using a
one-dimensional (1D) numerical realization of model (i), that extended and
localized modes decay on the same time scale and that the three locon inter-
action is dominant in the decay of locons with w > 2w..

Consider a linear chain of N uniformly spaced atoms connected by ran-
dom springs [29, 30]. Periodic boundary conditions are assumed. In terms
of displacements u, (unt1 = u1) of atoms a from equilibrium, the potential

energy of the system can be expressed as
1 X )
V = 5 Z [Xa(ua - ua_|_1) . (217)
a=1

Here K,=Ko(1 + £,), where €, are random numbers uniformly distributed in
the interval < —b,b >, and Ky=10.6 eV/;\2 is chosen to simulate a hypothet-
ical linear silicon chain (the silicon atom mass M) with maximum vibrational

frequency wmax = 21/ Ko/M =~ 80 meV in the case of no disorder (b = 0). The
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Figure 2.18: Calculated DOS for the 3000-atom linear chain with the spring

constant disorder of b = 0.7 (solid line) and b = 0 (dashed line).

length scale is the interatomic spacing, the exact value of which is not im-
portant here. For the case N = 3000, vibrational eigenstates and frequencies
were found by exact numerical diagonalization. This number is sufficiently
large to ensure that the conclusions will not be affected by finite size effects.
The goal is to numerically realize the “fracton model” scenario with a majority
of VS localized. As shown later, the strong disorder value b = 0.7 suits this
purpose and will be used from now on. The “clean” case, b = 0, will serve as

a reference.

Figure 2.18 shows the vibrational density of states (DOS) for the above
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model and for the case b = 0. The latter can be trivially solved by introducing
wave vectors. Consequently its DOS has the 1/@ dependence and
a van Hove singularity at wpax. As the disorder increases, the description of
VS in terms of wave vectors is less and less valid. For b = 0.7, the van Hove
singularity is washed out and DOS becomes nearly flat.
In a 1D infinite system any disorder causes all VS to be localized [31], with
a trivial exemption for the zero-frequency mode corresponding to a translation
of the system as a whole. However, if N is finite there are always low-frequency
modes with L larger than the system size. They appear to be extended, sound-
wave-like modes, although on intermediate time scales they behave as diffusons
[32]. Only after the system size is increased, they become manifestly localized.
A good measure of the number of atoms participating in the vibration of mode
2 is the participation ratio P;. Its inverse is defined as
N .
/P =3 (2.18)
a=1
where ¢! are normalized [3,(e!)? = 1] vibrational eigenstates with frequencies
w;. we plot 1/P in Fig. 2.19. 1/P grows monotonously with frequency, the
dependence being close to quadratic for w > 10 meV. At lower frequencies
I/P =~ 1/N, since L > system size (for infinite N it has been predicted [33]
that 1/P ~ w? as a result of 1D elastic sound-wave scattering). To accurately
locate the mobility edge w. we use the Thouless criterion [34], that Aw/éw
should exhibit a sharp drop at w.. For a given mode, Aw is the locally averaged
change of the mode frequency under the change of boundary conditions from

periodic to antiperiodic, and éw is the local average level spacing. we find it
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Figure 2.19: Inverse participation ratio 1/ P and the cumulative Thouless num-
ber 7 (inset) as a function of frequency. The vertical line in the inset is the

mobility edge w. ~ 9 meV.

convenient to consider the cumulative quantity 7(w) = [’ dw'Aw(w')/éw(w’),
which is plotted in the inset of Fig. 2.19. The mobility edge (vertical line)
is w. & 9 meV and Aw/éw at w, is less than 1%. Locons with w > w. form

~ 90% of the spectrum, enough to simulate model (i).

To get a qualitative understanding of how VS decay, consider a simplified

version of zero-temperature decay rate formula (full formula see, e.g., Ref.
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[23]),
fi = Z];(Ji]‘k)Q(S(wi —W; — wk), (219)

where the sum is over all modes j and &, and
Jijk = 3 _Nacneien (2.20)

measures the overlap between modes ¢, 7, and k. 17, is a binary random
variable having values 1 or —1. Only “fission” decay processes (i — jk)
are allowed at zero temperature. “Fusion” processes (ij — k) appearing at
finite temperatures will not be considered here, since they can be handled
analogously. In 1D VS have a partial memory of a wave vector, and therefore
a partial phase coherence. The reason is that the nth vibrational eigenstate has
n — 1 nodes (if the zero-frequency mode is n = 1) [29]. 7, is inserted into Eq.
2.20 to eliminate this coherence, so that the results will not be substantially
affected by dimensionality (apart from the DOS effects). Imagine VS with
amplitudes independent of frequency. Then an expression similar to Eq. 2.19
can be obtained for the decay of the VS caused by a set of nonlinear springs
with potentials ~ n,u + O(ul), externally attached to each atom.

The spectral dependence of T' is shown in Fig. 2.20. The case b = 0,
plotted in (b), does not represent the decay of 1D crystalline phonons, since
the phases of these are randomized by 7, in Eq. 2.20. It, however, shows the
hypothetical behavior of random-phase extended modes, such as occur below
the mobility edge in 3D. The w variation of T follows the joint density of states

(JDOS), ;1 6(wi — wj — wg), and provides a benchmark when discussing the
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decay behavior of locons. Data in (a) at w > w. are much more scattered
than in (b), since the locon decay involves some overlap statistics (explained
below). Therefore, local averages are used to represent the data. [ in (a)
increases with frequency and follows JDOS, having similar magnitudes as in
(b). According to model (i) there would be a sharp decrease in T beyond 2 w,.
This certainly does not happen.

The reason why the behavior of I' differs from the one predicted by model
(i) is that processes (3) can not be neglected. In fact they are dominant decay
processes for high-frequency locons. Consider a decay ¢ — jk, where z, j, and
k are locons with corresponding participation numbers P;, P;, and Pj. Eq.
2.19 can be rewritten as I'; = [ [ dw;dwi N(w;)N(wi)JJ? (w;, wi)é(w; —w; —wi),
where N(w;) is the total number of states at w;, and J7(w;,wy) is J7;, averaged
over frequency shells of w; and wg. A simple scaling argument [27] shows that
J}w;,wy) does not explicitly depend on P;, P;, or Py. It goes as follows. The
maximum decay magnitude among J2, is found when i lies entirely within an
overlap of j and k, and scales as 1/ P; Py (¢! ~ 1/y/P;, etc., and the sum in Eq.
2.20 is over P; random-sign numbers and scales as \/P;). The probability for
this overlap to occur scales as P; P,/ N?. An important assumption used here is
that locons ¢, 5, and k, having different frequencies, are spatially uncorrelated
(illustrated below). The average J2(w;,wy) therefore scales as 1/N? and T is
N independent (and follows the JDOS). The small probability of the three-
locon overlap is exactly compensated by the large magnitudes of decay matrix
10

elements, when the overlap occurs. As for hopping processes [ — p'l”, one has

to distinguish between two cases. If w, < wj,wp [as in model (i) and this
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paper|, the two locons [ and {" spatially repel each other [28] and the decay
rates decrease as L of [ and [” decreases. On the other hand, if w, is not
small, one can apply the above scaling arguments, since the majority of [ and
" are not spatially correlated. Decay rates of this “uncorrelated” hopping are
therefore independent of the localization character of VS involved and follow
the JDOS. When a low-frequency (w; < 2w.) locon decays into two propagons,
[ — p'p", the overlap probability is 1 (P;, P, = N) and the case is trivial,
similar in behavior to three locon and uncorrelated hopping processes. These
arguments do not depend on dimension and worked, as far as one could tell,
in 3D also [27].

Figure 2.21 illustrates the foregoing discussion. Data are represented by
running averages. Decay [ — ['l" in (a), obtained by considering only j and k
with w;, wr > w, in Eq. 2.19, dominates the high frequency region and grows
monotonously with frequency. When, on the other hand, restricting, say,
modes j to be propagons (w; < w,), one gets hopping [ — p'l"” which decreases
as frequency is increased. Since w. is large enough to allow hopping between
locons from different spectral regions, the decrease is quite moderate. The
graph (b) in Fig. 2.21 shows hopping when propagon frequency is restricted
by w, < 1 meV. Computed rates are scattered over several magnitudes. In a
sample of decay rates of locons confined into a small frequency band (of the
width, say, 1 meV), the majority have negligible values, but there are < 10%
of large magnitude rates giving rise to large local averages (they come from a

residual overlap between locons with similar frequencies). As the graph shows,

local medians sharply decrease with increasing frequency and deviate strongly
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Figure 2.21: Calculated T' (a) for the three-locon (solid) and hopping (dashed)
decay processes, and (b) for hopping between locons from the same frequency
region (circles—see caption to Fig. 2.20). Vertical line in (a) indicates w..

Units are the same as in Fig. 2.20.



from local averages. Since the local distribution of decay rates is found to
have a strong central tendency around small values (the area in the tails is
small), the medians better represent computed data. For other decay types
local medians and averages are similar.

Finally, we present figure 2.22 to support the argument that locons from
different spectral regions are spatially uncorrelated, as opposed to locons with
similar frequencies, which repel each other. N = 1000 is used for this purpose.
The spectrum is divided into 6=1 meV wide bands, each band containing 10
VS on the average. For every mode 7 in a band only atoms a having (¢)? >

7
max

0.2 (€ ,..)* are shown, e being the largest magnitude found among the
coordinates of the vector e. Localization starts somewhere beyond 15 meV,
where fewer than P &~ 200 atoms participate in the vibration. There is clearly
no statistically relevant overlap between the locons lying within a frequency
band. On the other hand, locons from different spectral regions show no sign
of repulsion; their spatial positions are essentially uncorrelated.

One may ask how the above results depend on the degree of disorder. we
have made calculations similar to those above, with different values of b (up
to almost b = 1). we found the foregoing conclusions valid for all the studied
cases, the only effect of the increase in b being the increase of the spread of
the calculated T'. This happens because by increasing b, L decreases, as does
the number of the decay events, and the overlap statistics gets worse.

In summary, we have used a 1D random spring atomic model to demon-

strate that the interaction including three locons is important for the locon de-

cay processes. we have shown that extended mode and locon decay rates have
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Figure 2.22: Localization of VS in the 1000-atom linear random spring model.
For each mode only the atoms vibrating with amplitudes higher than a certain

value (see text) are shown. The solid line is the particiation ratio P.
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similar magnitudes, increasing with increasing frequency and closely following
JDOS. Hopping decay rates decrease as frequency increases; the decrease is

sharper as the frequency difference of hopping locons gets smaller.

2.5 Gruneisen Parameters and Thermal Ex-

pansion *

Unlike thermal conductivity and specific heat, which have “universal” fea-
tures, thermal expansion is a special property of each glass. The coefficient of
linear expansion « can be either positive or negative, with magnitude sensitive
to sample preparation methods [35]. This is true even at very low tempera-
tures (7' <1 K), where « is believed to be associated with tunneling modes
[22, 36] and large dispersion of 4 values is found [37].

Here we present an analysis of a(T') for an atomistic model of amorphous
silicon, an important electronic material. The value of a(7") has been mea-
sured only at T" = 383 K [38], making theoretical modeling particularly useful.
Our calculation shows that the value of «(T') is lower than that of crystalline
silicon. Deviations from the crystalline values are more dramatic at lower tem-
peratures, and are caused by volume driven internal strain, which makes the
thermal expansion sample dependent. The predicted Griineisen parameters
display a surprising simplicity, which we interpret as evidence for special, pos-

sibly generic, properties of vibrations in glasses. Specifically, we find that the

4]. Fabian and P. B. Allen, Phy. Rev. Lett. (in press)
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majority of modes which are neither localized nor ballistically propagating (we
call them “diffusons”), have a property of global indistinguishability, whereas
high-frequency localized and low-frequency resonant modes are distinguished
by the special structural imperfections at which they have largest amplitudes.
In particular, the resonant modes have a considerable dispersion of v values
(from —31 to 4), consistent with our finding that internal strain is largest at
the centers of these modes. Below 1 K, very large average magnitudes of ~
(|v| > 10) were measured in many glasses [37] (“normal” values are about
one). Although the size of our model does not allow us to go as low as 1
K, we show that the resonant modes provide a likely origin of this anomaly.
Finally, we establish a close link between the mode Griineisen parameters and
the mode bond-stretching character.

Insofar as a complete set of normal modes can be defined (i.e., the modes
decay on time scales much larger than their periods), one expects vibrational
entropy S to be well approximated by S = kg >_;[(ni+1) log(n;+ 1) —n;log n,],
where n; = (exp(fhw;/kgT)—1)""! is the average equilibrium occupation num-
ber of the mode of frequency w;, ¢ being a counting label going from 1 to 3/V.
N is the number of atoms and kg is the Boltzmann constant. The frequency
w;(V,T) may depend on both volume V' and temperature. Using the standard
thermodynamic relation 3o = &1(09S/9V)r, with isothermal compressibility

kT, we get (see, e.g., Ref. [39])

K
a(T):% i (2.21)

Here ¢; = kg(hw;/kpT)*ni(n; + 1) is the specific heat of a harmonic oscillator,
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and v;, given by v; = —dlogw;/dlogV, are known as the “mode Griineisen
parameters”; they measure how sensitive the vibrational eigenfrequencies are
to the change of volume. Their knowledge is essential not only for (7)),
but also for the interpretation of the internal friction and sound attenuation
experiments [40, 41] (see also Sec. 2.6).

Perturbation theory (see, e.g., Ref. [42]) gives the following formula for

Vi
abc ?1*04 éﬁ = 5 ¢
= Py 4 For), 2.92
_ €aa bﬁ a O«
e — 2.23
' Z o ;% MM, (2.23)
Here @2, (927 ) are the coefficients of the quadratic (cubic) terms of the Taylor

expansion of potential energy in terms of the displacements u,,, of atoms a from
equilibrium in the direction o = (z,y, z), and r,, is the position vector of the
ath atom. The vibrational eigenvectors ¢!  are normalized (3, |€¢!,|?*=1), and
M, is the mass of atom a. The sums in Eq. 2.22 and 2.23 are over all atoms.
Because of periodicity, in a crystal the label ¢ can be written as (Q,)), denoting
wave vector and polarization. The eigenvectors €,,(Q, A) are proportional to
¢'Q*a /\/N_ and the resulting crystalline phase coherence allows a simplification
of the sum in Eq. 2.22 to the neighborhood of a single small unit cell. By
contrast, normal modes in a glass have no a priori quantum numbers, and
quantitative insight is best achieved by numerical diagonalization for finite
models.

If a solid is subject to an infinitesimal homogeneous isotropic strain e, its

atomic coordinates change to r!, = rq.(1 + €), and volume to V' = V(1 + 3¢).
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o are not the equilibrium

Unless atoms in the solid are fixed by symmetry, r
coordinates of the solid with volume V'. This happens in glasses. After the
strain is applied, the atoms relax to new equilibrium positions r/,_, + €7,,. This
is the origin of the internal strain (Eq. 2.23) occurring during the thermal
expansion of glasses (and crystals with atoms not in centers of symmetry [35]).
In silicon crystal r,, = 0.

To calculate a(T') we need the values for k. The corresponding pertur-
bation formulas for k1, which take into account internal strain, can be found
in Ref. [43]. We obtain the value 1.13 x 107!? cm?/dyn for the present model
of amorphous silicon. For crystalline silicon, the SW potential gives the value
of 0.986 x 10712 [44], agreeing well with the experimental value of 1.02 x 107'2
[44]. Also, for silicon crystal, we must sum over the Q points, which we do
using the tetrahedron method with 1772 tetrahedra in the irreducible wedge
of the Brillouin zone. The results are shown in Fig. 2.23, together with the
measured data.

Compared with experiment [45], a(T") of silicon crystal is reproduced very
well at T' >200 K. At lower T' the SW potential does not reproduce the ob-
served negative values of a. Negative a has been successfully explained [46]
by negative values of v for the low energy transverse acoustic (TA) branch.
As shown in Fig. 2.24, our v values are too weakly negative in this regime. In
Fig. 2.23 it is predicted that «(T') for amorphous silicon is somewhat lower
than «(T') for the crystal. For comparison, Fig. 2.23 also shows «(7T') without
considering internal strain (7., in Eq. 2.22 is set to zero), and the calculation

based on a 216 atom model of amorphous silicon. Internal strain reduces the
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Figure 2.24: Calculated Grineisen parameters ~; for crystalline silicon as a
function of frequency. The polarization labels are: TA—transverse acoustic,
LA —longitudinal acoustic, LO—longitudinal optical, TO—transverse optical.

The solid line is the vibrational density of states (DOS) in arbitrary units.

93



0.2 1,y

0 10 20 30 40 50 60 70 80
Frequency (meV)

0.0
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values of a by almost 30% at high T. At lower T' the values become nega-
tive. The model dependence is also clear. The 216 atom model is based on
the same WWW algorithm and SW potentials, but is more topologically con-
strained (e.g., no four-fold rings are allowed), and has lower energy/atom (by
~ 0.5%) and higher density (by ~ 3%) than the 1000 atom model. Its a(T)
is higher and closer to the crystalline case and the measured value. This is
not surprising. Measurements on silica [35, 47] showed that annealing history
(or density) markedly changed its thermal expansion at all temperatures. For
example, pure SiO; aged at 1400°C and quenched, has «(T') at high 7" lower
by up to 50% than that slowly aged at 1000°C. Our calculation predicts that
future experiments should see similar behavior in amorphous silicon as well.

To understand the behavior of a(T) one has to look at the frequency
dependence of Griineisen parameters. The values of v for silicon crystal, for
more than 1000 randomly chosen Q points from the irreducible wedge of the
Brillouin zone, are in Fig. 2.24. Since there is a degenerate surface in Q space
for a given w, v(Q, A) has a distribution of values at each w. These values are
further split according to the branch X of corresponding phonons. Particularly
striking polarization effects appear at low w, where TA phonons form a distinct
broad band of ~;.

It is instructive to compare Fig. 2.24 with Fig. 2.25, where we plot the
mode bond-stretching parameter 5;,

. . 2 a
o Ycaps (U — 1) - ngy| i

Z caps UG = ujf*

: (2.24)

introduced in Ref. [48] (we modified slightly the original formula which did
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not yield the same S; for different but degenerate i). The summation is over
all atom pairs < a,b >, where b is within 2.8 A (the distance where the first
nearest neighbor peak in the pair correlation function of amorphous silicon
ends [14]) from b, and ng,, is the unit vector in the direction of the bond
< a,b >. When 5; is close to one, mode 2 is mostly bond-stretching, while
values closer to zero indicate bond-bending modes. The similarity between
the two figures is striking. Except at very low w, one is tempted to write
“~; &~ const x 5;.” The reason for such close relation is that anharmonicity,
reflected in ~;, is much greater in the bond-stretching part of the interatomic
interaction than in the bond-bending part.

We now discuss the behavior of +; in amorphous silicon, whose vibra-
tional states were discussed earlier [8, 27]. At low frequencies (< 15 meV)
the modes are propagons, acoustic-phonon-like vibrations propagating ballis-
tically for distances greater than their wavelength. Some of the propagons are
resonantly trapped at certain places in the sample, with reduced amplitude
elsewhere (but not exponential decay as in a localized state); but at high w
there is no continuum of extended states to decay into, and vibrational ampli-
tudes decay exponentially with distance. Properties of these resonant modes
were studied in different glassy systems [17, 49], and for our model will be
reported elsewhere [50]. Modes between 15 meV and 71 meV are diffusons,
extended states carrying energy diffusively. Since they form the majority of
the spectrum, diffusons dominate the thermal properties of amorphous silicon
at temperatures from several kelvins up to the melting point. Above w, ~ 71

meV, the mobility edge, the modes are locons, localized states.
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Figure 2.26: Calculated Griineisen parameters «; (A) and bond-stretching
character S; (B) of amorphous silicon as a function of frequency. The vertical
line at w, &~ 71 meV is the mobility edge. The scale in (A) is split by the

horizontal line at —1 to emphasize the large negative values of v at low w.

The solid line is DOS in arbitrary units.
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Figure 2.27: Spectral power SP; of internal strain r. Almost all the spectral

weight is in the region of small-frequency resonance modes.
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The calculated «; are shown in Fig. 2.26(A). Three regions can be clearly
distinguished. (i) At low frequencies the values are very scattered, unusually
large, and mostly negative. (ii) In the region of diffusons, after a monotonous
increase, 7; becomes almost constant at ~30 meV, and its values collapse into
a very narrow region. (iii) At locon frequencies 4; spreads out again, but much
less than at low w.

Why are the low frequency values of v so large? At most one would expect
the data to be scattered between 0 and 1 due to a partial presence of Q and A
for propagons. We find that the cause of this anomalous behavior is the reso-
nant modes. As already shown [17, 49] (see also Sec. 2.2), these modes have
very large amplitudes at groups of undercoordinated atoms. Similar groups of
overcoordinated atoms are responsible for locons. Since undercoordination im-
plies “softness”, it is natural that the internal strain r;, is also largest at these
sites. (Figure 2.27 shows the spectral power SP;, = |3, F - efl|27 confirming the
above assertion that internal strain is correlated with resonance modes.) This
is why the magnitudes of ~ are large for the resonant modes. The dispersion
of values, also seen for locons, is explained by different nature of topological
defects where the modes have largest amplitudes.

The bands seen in v(Q, A), Fig. 2.24, of crystalline silicon, are suppressed
in the “diffuson” portion of the spectrum of amorphous silicon. This has the
following interpretation. In a crystal, knowledge of the pattern of a normal
mode in a few adjacent unit cells allows one to predict the pattern in distant
regions. In a glass, such a prediction is not possible without a very large com-

puter calculation. More surprising, different normal modes in the “diffuson”
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part of the spectrum are not globally distinguishable. If one knows the pattern
of displacement of two modes (il and 72) of similar frequencies in one spatial
region, one could not recognize which pattern was ¢1 and which 22 in a distant
region. There seem not to be properties other than w; which can classify these

modes.

Finally, Fig. 2.26(B) shows S; for amorphous silicon. Note the surpris-
ing uniformity of bond-stretching character (see also Ref. [48]), even in the
region of propagons where memory of polarization character might have been
expected. As in the crystalline case, S; closely follows v;, except at low fre-
quencies where the values of 4 are much more influenced by dynamics than by

vibrational pattern.

2.6 Work In Progress

This section is an eclectic selection of topics that are still under investi-
gation, but are already in the stage of yielding some results. The first topic
deals with the possibility of describing diffusons (“the most random” vibra-
tional modes as for their displacement pattern) by random matrix theory. In
a sense such a study is overdue. Random matrix theory is a developed sub-
ject and is manifested to be useful in many areas of physics. Vibrational
states in models of glasses have been studied for many years. And to make
the connection, one needs to know only the frequencies of the modes! Many
other properties of disordered systems have been scrutinized. In particular

the behavior of electrons in random media have been a playground for random
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matrix theorists for long time. In short, our study indicates that diffusons are
indeed random-matrix-like eigenstates, although at large (spectral) scales the
random matrix theory predictions deviate from our observations. In addition,
we show that locons have a completely different spectral statistics—the Poisson
one. Their neighboring frequencies are uncorrelated as one expects for modes
with very small spatial overlap.

Another interesting subject treated here is the sensitivity of the vibra-
tional frequencies to boundary conditions. Originally this sensitivity was used
to determine the mobility edge (localized wavefunctions are insensitive to what
happens at the boundaries). Thouless pointed out that the knowledge of Ag;,
the change of electronic energies ¢; under the change of periodic to antiperi-
odic boundary conditions, suffices for the evaluation of diffusivities of elec-
tronic wavefunctions in random media. This feature is attractive since one
does not need to know the actual wavetunctions to establish properties like
conductivity! We show that similar ideas apply in glasses. Diffusivity, origi-
nally calculated within the framework of the Allen-Feldman theory with the
need of all the vibrational eigenmodes, can be quite reasonably reproduced by
using the Thouless simple scheme.

The last topic we treat is internal friction and sound attenuation. Many
experimental data are available on this subject, but there is no theory to ex-
plain them satisfactorily. Some progress has been made at low temperatures
T < 1K, where the standard tunneling model accounts for many observations.
At higher temperatures the situation is much more complicated. Tunneling

modes can still contribute, but the largest contributions come from both struc-
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tural relaxation and coupling of thermal vibrons to sound waves. The latter is
expected to dominate at very high frequencies (> 100 GHz). Here we develop
a basic theory of the vibrational contribution, starting from a Kubo formula.
Momentum current operator is found from Hamiltonian and connection with
Griineisen parameters is made. Formally the result is in agreement with a

formula obtained by a Boltzmann-like treatment of a phonon gas.

2.6.1 Random Matrices and Vibrations in Glasses °

Random matrix theory (RMT) sounds as a natural tool to study glasses.
Glassy structures have some degree of randomness (in amorphous silicon it is
the bond-length fluctuations) which should be reflected in the properties of
their structural dynamics (e. g., the force-constant matrix Fy, 3, Eq. 2.7, is
“random” as it reflects the random distribution of bond angles). So far the
focus of random-matrix theorists was in the properties of electronic wavefunc-
tions in disordered systems. Many original results were obtained, in particular
in the region of metal-insulator (localization-delocalization) transition [51].
One can study vibrational dynamics, elaborate on the still mysterious two-
level systems, which are thought to have randomly distributed parameters, or
investigate the distribution of local or global structural configurations (a nice
attempt to study various structural effects in glasses at low temperatures by
using RMT has been made recently by Kithn and Horstmann [52]). The es-

tablished (in this section) connection between RMT and vibrations in glasses

>J. Fabian and J. L. Feldman (unpublished).
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shows a possibility of an analytical model for the latter.

Amongst different vibrons in glasses, diffusons are most likely to be as-
sociated with RMT. Diffusons have no wave vector, i. e., no phase coherence
connects vibrational displacements at distinct spatial regions (global indistin-
guishability, see Sec. 2.5) as it is for phonons. Moreover, the atomic dis-
placements are in random directions. The only property that distinguishes
between different diffusons is their frequency, reflected in the preserved local
correlations between atomic displacements (see Sec. 2.2).

In order to see whether or not diffusons can be described by RMT, we
only need an ordered set of their frequencies (note that the case of vibrations
is not typical; diagonalizing F,, 3 results in w? not in w;). RMT states that
spacings S between neighboring frequencies (level-spacing distribution, LSD)

are distributed according to the Wigner surmise (see, e. g., Ref. [53]) ©

T 75?2
pw = §Sexp(—T). (2.25)

The Wigner distribution pw reflects level repulsion in spectra: small spacings
have a small probability of occurrence. We have to note that the spacings S
are not the spacings one obtains from the “raw” set of frequencies. Instead,
S result from the procedure known as unfolding [53]. If DOS is not constant,
level spacings are smaller in the regions of larger DOS, and vice versa. By
unfolding, one maps the original spectrum onto an ordered set of numbers

with constant DOS.

%The Wigner surmise holds for the Gaussian Orthogonal Ensemble (GOE) of real

symmetric matrices, such as F,, p3.
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Figure 2.28 shows the calculated LSD for the 4096-atom model. Only the
diffusons from 45 to 65 meV were analyzed. The solid line is the prediction
of GOE: the Wigner surmise pw. Agreement between model calculation and
RMT is excellent. The level repulsion reflected in the small probability of
finding two diffusons very close to each other now means a small probability
of degeneracy. It is not surprising that degeneracy is inhibited in the region
of diffusons: there is no symmetry (like discreet translations in crystals) in
glasses. Locons, on the other hand, show no signs of level repulsion. Figure
2.29 plots LSD for the locons of the 4096-atom model. The result agrees very

well with the Poisson distribution
pp = exp(—S9). (2.26)

This means that neighboring levels of locons are uncorrelated, and there is a
large probability of finding two locons with similar frequencies. The reason is
that locons with similar frequencies repel each other spatially. If they would
overlap, a small perturbation would mix them together to form a more ex-
tended state. Since spatially repelling locons share different regions in space,
their energies are hardly correlated.

Another useful property of a set of eigenvalues is ¥5(L), measuring devi-
ations from average, of the number of levels n(L) in a spectral interval L (not

to be confused with the system size):
Sa(L) = (n*(L)) — (n(L))*. (2.27)

The averaging (...) is over the selected set of unfolded frequencies. The GOE
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Figure 2.28: The level-spacing distribution for the 4096-atom-model diffusons

with w between 45 and 65 meV. The dashed line is the Wigner surmise pyw .
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prediction is [54]
GOE 2 . Lo 2 _ T .
N,00L) = {In(27L) + v+ 1+ 3 [Si(xL)]" — 55‘&(7?[/) — cos(27 L)
T
2
— Ci(2rL)+ 7L |1 — =Si(2x L)|}, (2.28)
T

where v &~ 0.577 is the Euler constant, and S7 and C'v are the sine and cosine
integrals. Figure 2.30 compares the calculated ¥, for diffusons with ©§9F.
An agreement is up to about 10 level spacings L. At larger L the calculated
values do not rise (as they would do according to RMT) but rather oscillate
around an almost fixed value of 1. This indicates a failure of RMT. Similar
observations have been made for ensembles of nuclear data [54] and the zeta

function zeros [54]. A clear understanding of the failure is still lacking.

For the locons obeying the Poisson statistics one predicts Y1'(L) to be
given simply as L (for uncorrelated levels in the interval of length I one expects
to find L + VL levels). A comparison of the Poisson distribution prediction
with the calculation is in Fig. 2.31. Locons from 73 to 88 meV were analyzed.
The maximum calculated I was 4 level spacings due to a small number of
locons available. The agreement with the prediction is good, although the
values of Y5(L) are systematically lower than L. Finite size effects and small

(on-shell) locon-locon overlap may account for this discrepancy.

More correlation functions remain to be computed before authoritative
conclusions can be made. In any case, the above results indicate that diffusons
are indeed describable (at least at short spectral scales) by RMT. Locons obey

Poisson statistics.
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2.6.2 Diffusivity and Sensitivity to Boundary Condi-

tions ’

In their work on diffusive transport of energy by vibrations in glasses,

Allen and Feldman [7, 8] introduced the concept of mode diffusivity D;, as

D; = ﬁzwﬁﬁé(wi — wj). (2.29)
3h w? pox

Here S;; is the heat current operator (see [7, 8] for details). In glasses the heat
current operator has vanishing diagonal elements (the majority of vibrons are
nonpropagating). The off-diagonal terms can carry heat since the thermal
averaging of 5;; uses nonstationary states like wave packets, rather than vi-
brational eigenstates. The application of formula 2.29 to the WWW models
of amorphous silicon with the SW interatomic potentials has lead to a suc-
cessful explanation of the heat conductivity measurement. (Heat conductivity
k = ».; C;D;, where C; is the mode specific heat.) In particular, the univer-
sally observed plateau at T' ~ 10 K and subsequent rise of x was explained
using the above concepts and an assumption of tunneling modes.

In order to calculate diffusivity D; according to Eq. 2.29, one needs to
know the eigenmodes of the large system. However, it seems that there is
another way to evaluate the mode diffusivities. Thouless, in connection with
Anderson electronic localization, studied diffusivity of electrons in disordered

media. The question was how to know whether a mode is localized or not.

One way was to calculate conductivity at a given energy using the Kubo-

7J. Fabian and J. L. Feldman (unpublished).



Greenwood formula. If conductivity is zero, modes are localized. Thouless
found a connection between conductivity and changes of eigenenergies when
periodic boundary conditions are changed to antiperiodic. If, for a state 2, the

energy shift is Ae;, the diffusivity is [55]

Equation 2.30 was derived from a Kubo formula. Does it also apply for vibra-
tions in glasses (with ¢, = hw;)? Since the heat current operator is different
from the electrical current operator, the answer is not obvious. Figure 2.32
compares the Allen-Feldman calculation with the 1000-atom model and the
calculation with the same model but with Eq. 2.30. Formula 2.29 involves the
summation over spectral neighbors, while Eq. 2.30 involves only the mode in
question. This might explain the large dispersion of the values of D; calculated
by using the Thouless method. The agreement between the two methods is

very good, except at very low and middle frequencies.

The closeness of the two methods further supports the idea of intrinsic
harmonic diffusivity of vibrons in glasses. Indeed, a qualitative way to see
why Eq. 2.30 should hold is to consider wave packets superposed by modes
of similar frequencies. In order for a wave packet to “feel” the boundary
conditions, it has to spread out to the boundaries. The time it takes is D;/L?

and is connected to the energy uncertainty Ae; through Eq. 2.30.
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Figure 2.32: Mode diffusivity D; of the 1000-atom model of amorphous silicon,

calculated by using the method developed by Thouless (open circles) and the

Allen-Feldman formula 2.29 (solid line).
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2.6.3 Internal Friction and Sound Attenuation 8

Introduction

Sound attenuation is arguably the least understood subject in glasses.
This is because there are many competing factors that lead to sound wave
damping. Most important are thermally activated relaxation, hypothetical
tunneling states, topological defects, and thermal vibrations (in metals at low
temperatures also conduction electrons). It is difficult to sort out different
contributions for a given frequency and temperature range. In addition, if the
attenuation is caused by interaction of sound waves with thermal vibrons, the
corresponding physics depends on the quantity Q7;,, where Q is the sound
wave frequency and 7y, is the relaxation time of the thermal vibrons. For
Qi < 1 (Akhiezer regime, [56, 57, 58]) ) the sound wave is attenuated by
a dissipative process where a gas of vibrons tries to reach a local equilibrium
characterized by a local (sound-wave given) strain. If Qry > 1 (Landau-
Rumer regime, [56, 57, 58]), the attenuation is an elementary decay of the
sound wave as a stationary mode of a corresponding harmonic lattice. Since
the relaxation times in glasses are generally not known (see, however, Sec.
2.3), it is difficult to establish to which regime given data belong. Thermally
activated relaxations are believed to dominate up to sound wave frequencies of
order 1GHz. At higher frequencies thermal vibrons become more important.
Recently Liu et al. [59] reported a discovery of a glass (amorphous silicon

with 1 at. % H) without low energy excitations (like tunneling states). If this

8]. Fabian and P. B. Allen (unpublished).
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would also imply inhibition of structural relaxations, such materials would be
excellent to use for sorting out different contributions to sound attenuation.

The situation looks better on the experimental side. The most studied
glass, silica (amorphous SiO3), will serve as an example (sound attenuation
in amorphous silicon has not been measured). The following observations are
of interest here. (1) Zhu et al. [60] found a quadratic dependence of the
attenuation coefficient on frequency from 76 to 440 GHz, and no significant
temperature dependence from 80 to 300 K. Similar observations were found
by Morath and Maris [61] for various polymers, except that the attenuation
increased by a factor between two and three with increasing temperature. (2)
Vacher et al. [62] subtracted the contributions of tunneling processes and
thermally activated relaxations. The resulting attenuation, which should be
mostly due to thermal vibrons, was still 2.5 times the observed attenuation
in crystalline quartz. (3) Low temperature measurements are satisfactorily
explained by the standard tunneling model [63].

Here we present a draft of a theory of the vibrational contribution to sound
attenuation in glasses. Thermal vibrons attenuate sound via either thermal ex-
pansion or internal friction (viscosity). A longitudinal sound wave causes local
contractions and dilations of density. Temperature changes accordingly and
heat flows between regions of different temperatures. The wave is attenuated
by energy dissipation during the heat transfer. Since thermal conductivity
in glasses is much smaller than in crystals (while attenuation is greater), we
do not expect this mechanism to be relevant. In addition, this way of en-

ergy dissipation is not present for transverse sound waves. In the following we

114



therefore concentrate on the internal friction mechanism. A sound wave can
be considered as an adiabatic perturbation to the vibron system that leaves
the occupation numbers of the vibrons unchanged. Vibrons suddenly find
themselves in a nonequilibrium state characterized by old occupation numbers
with new frequencies. It takes time of the order of the relaxation time 7, for
the vibrons to reach the new equilibrium. This new equilibrium always lags
behind the sound wave and energy is dissipated. The condition Q7 < 1 must
hold for the vibrons to equilibrate before the sound wave completes its cycle.
The Landau-Rumer regime 27 > 1 is more trivial, but cannot be explored by
a finite model with N ~ 1000 due to the existence of a minimum frequency
Wimin of the order of 1 THz.

In kinetic theory internal friction 7,ps(t) measures the response of the
momentum flux density of a system to a homogeneous rate of change of strain
Vs = %(65'% + 0,ts). Linear response theory gives for the Fourier transfor-

mation

1
ags(@) = =g I { DA ()}, (231)

where wa (w) is the Fourier transformation of the retarded momentum flux
autocorrelation function. It can be expressed as an analytical continuation
DEy s(w) = Dapys(in) |ivy=wtio of the Matsubara correlation function

Dapys(iv) = — /h/kBT dr e (T;(Sap(7)555(0))). (2.32)

0

Here S,z is the momentum flux operator (see below) and T orders the op-

erators according to imaginary time ¢7. The angle brackets denote averaging
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over a canonical ensemble. Once the coefficient of internal friction is known,

the sound attenuation coeflicient I' can be calculated:

KpgKs o
3 Z Nopystotly ™ pry™ (2.33)
o afys

We denoted as vs the sound velocity, p density, u unit polarization vector
and K wave vector of the sound wave. The coefficient of internal friction is
only weakly € dependent, so the 0? dependence of I' is characteristic for the
Akhiezer regime. We note that 5 itself is a useful quantity that has been

measured for many glasses (including amorphous silicon) [64, 65].

Momentum flux operator for a lattice

We need a microscopic expression for the momentum flux. Let a crystal
have N unit cells each containing n atoms (a glass is a special case with N =1
and n very large). Denote a-coordinates of positions and momenta of kth
atom (with mass my,) in the Ith cell as z* (1) and pf (1), respectively. The local

momentum conservation

Ipal(x 9Sap(x) o
rel) 4 2ee) — 0, (2.34)
Sag = de;cSag(x), (235)

with the local momentum p,(x) = 5 p* (1)6(x — x*(1)) current density, leads

to the following choice for the momentum flux tensor S,g

B (p’;<l>p§<l>

&l m

b5 [PRORSD + x2<l>F§<l>]) - (238)

Here F*(1) is the force acting on the atom at x*(1). The flux is made explicitly

symmetric. The first part in Eq. 2.36 is kinematic and corresponds to a
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momentum transfer by the atomic motion itself. This carries nearly all the
momentum in a gas, but very little in a solid. The second part is potential and
represents a momentum transfer due to interatomic forces. This term carries
essentially all the momentum in a solid (either crystalline or glassy).

The vibrational force up to the quadratic terms in the displacements
u*(l) = x*(1) — %*(1), where %*(1) are equilibrium atomic coordinates, is

Fi(l) = S oMt (1)

51« I

+ = Z ST TREEE Iy (1)uE (1), (2.37)

ﬁ,y k/k/l lll/l

Here we substitute normal coordinates @ for the displacements u*(/):

u’C l)

o fk %

where the sum is over wave vectors q from the first Brillouin zone (for glasses

) ROQq;, (2.38)

q = 0), and j is a band index from 1 to 3n. Substituting the normal coordi-
nates into Eq. 2.36 with the use of Eq. 2.37 one obtains the following for the

momentum flux operator Sog = S5+ 524

Sas = Z ) Qajs (2.39)

5 Z V.3 (), 9)Qqi Quryr- (2.40)

CIJCI]

2
Sis

The coefficients V,5..(qj...) can be deduced from the following example:

: G
O (11 2k (1) ==, (2.41)
%;% \/Nmk,

The pattern should be clear. (i) For each pair a3 we sum over the atoms

kl in the corresponding coefficient ®(-*+)(...1...) multiplied by 5:2(1) (ii) For
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each mode qj we sum over atoms kl and coordinates 4 in the corresponding

coefficient ®(-#-)(._.1...) multiplied by e*(qj)exp(iR(l)-q)/v/Nms. There are
no numerical factors here. Moreover, there is the wavevector conservation

“hidden” in the coefficients V(). For instance, the V,5(qj) is nonzero only for

q being a reciprocal lattice vector.

We will see below that the linear term S} ;5 has its origin in internal strain
phenomenon (see Sec. 2.5).
Internal friction

Finally we evaluate the Matsubara correlation function D,gs(iv;). Using

perturbation theory one has to consider terms of the form

(Tr (S25(m0)S2s(r2) H' () H'(a) ) ), (2.42)
(T: (Sha(m)S2(m2) H'(13))), (2.43)
(T: (S25(m1)S2%(72))), (2.44)

contributing in Eq. 2.32 in the same order. Perturbation H' is the cubic term
of an interatomic potential conveniently expressed in normal mode coordinates:
_ E Z ‘/ qJ qJ q//,]”)quQq’j’Qq”j”' (245)

qq q’ 5’3"

The evaluation is straightforward and the final formula (in the limit w < w;)
is

Tlaﬁw Z ’}/q]]”}/q]]'CCIJT6(wQJ w‘l]")' (246)

qjj’!
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We denoted as 'yzfj, the generalized mode Grutineisen parameters

o 1 o v®(0.) o
Yaip = T V() —qj") = 3 V0 (q), —qj',00) | L (2.47)
WqjWq;! 7 Wos
When j = j' this equation reduces to what is introduced in Sec. 2.5 as

a measure of sensitivity of vibrational frequencies to volume changes. The
second term in Eq. 2.47 has its origin in internal strain.

Surprising in Eq. 2.46 is the fact that dominant contribution to internal
friction comes from diagonal elements (j = j') even for glasses, where group
velocity of the majority of modes is zero. Similar formula for heat conductivity
[7] has diagonal elements that vanish for vanishing group velocity. Heat is then
carried by off-diagonal elements. Here we see that momentum is carried by
diagonal elements and momentum transfer is limited by anharmonic interac-
tions that broaden the delta function in Eq. 2.46. Indeed, in order to use Eq.
2.46 in numerical calculations, one has to introduce finite relaxation times 7;
(as calculated for amorphous silicon in Sec. 2.3) instead of delta functions:

Napys = Z 73}%‘73?;‘0ququ- (2-48)
aj
This expression is in formal agreement with the result of kinetic theory of a
phonon gas [66].
The numerical evaluation of Eq. 2.48 for our models of amorphous silicon

is a task for the future.
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