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I. INTRODUCTION

The compound BaBiO3 is a three-dimensional lattice cube with distorted perovskite

structure. If the ionic charge on bismuth is calculated, with barium as Ba+2 and oxygen

as O�2, bismuth in an undistorted BaBiO3 structure becomes Bi+4. Due to natural laws,

bismuth's �ve valence electrons are distributed as follows: 6s26p3. The removal of four

electrons in order to form Bi+4 causes the valence shell to simply become 6s1. The presence

of a lone electron in the valence shell is unstable for an atom. Bismuth would prefer to

either rid itself of that lone electron or attract another electron to form a pair. Hence in

BaBiO3, an alternating pattern of Bi+3 and Bi+5 develops, due to a transfer of electrons

between neighboring bismuth atoms1. The oxygen atoms with a negative two charge are

attracted to the Bi+5 site. The relationship between the electron transfer and movement of

the oxygen atoms, or phonon, is called electron-phonon coupling. In this paper, the strength

of this coupling will be referred to as the electron-phonon coupling constant. With half the

bismuth sites occupied by electrons and half unoccupied, it is therefore accurate to describe

pure BaBiO3 as a three-dimensional cube with simple lattice dimerization.

BaBiO3 can be doped with K on the Ba sites. The K atom has one 4s electron in its

valence shell, and hence becomes K+ in the compound. In essence each time K replaces Ba,

one electron is removed from the compound. This electron can be removed only from the

Bi3+ site, which produces a positively charged hole in the compound known as a polaron.

It has been shown that if the compound is doped twice, the second electron is removed from

the same site3, forming a hole known as a bipolaron. It is highly reasonable to attribute the

formation of polarons and bipolarons to electron-phonon coupling4. This project studies the

formation of polarons and bipolarons and other similar defects in the lattice structure and

the e�ects of electron-phonon coupling on their formation.
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FIGURES

FIG. 1. The structure of a dimerized ABX3 perovkite. A is a larger cation, B is a smaller

cation, and X is an anion. The larger cation A usually has smaller positive charge than cation B.2

Although BaBiO3 is a real-world solid, and hence three-dimensional, it behaves in a

quasi-one dimensional manner. Therefore an examination of this compound through a one-

dimensional model has many considerable bene�ts. Rice and Sneddon5 introduced a d = 3

model for BaBiO3. The d = 1; 3 models that are used in this project are based on the model

developed by Rice and Sneddon. Since only the electrons of bismuth and the oxygen atoms in

BaBiO3 have any signi�cance, the models consist of alternating bismuth and oxygen atoms.

Due to the fact that the atomic mass of bismuth is 13:06 times greater than oxygen's atomic

mass, the Bi atoms in the models are in a �xed position and the O atoms are coupled to the

Bi atoms by a harmonic spring. Like in the real world, if two atoms in the models move too

far apart, the spring is stretched and tries to pull them back; if the atoms move too close,

the spring is compressed and tries to push the atoms apart.

On average, the charge on each Bi atom in the lattice is +4. The negatively charged

oxygen ions are attracted to the Bi atoms with excess positive charge. The energy gained

when the oxygen atoms move towards these Bi atoms is proportional to the excess charge

and the displacement, un, which measures oxygen movement from the midpoint of two

neighboring Bi atoms. The coeÆcient of proportionality is the electron-phonon coupling

constant, g.

The valence shell of Bi in BaBiO3 on average has one 6s electron. The wave function
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of this electron overlaps with the corresponding wave function on the neighboring Bi atoms.

This overlap allows an electron to move to a neighboring Bi site. The energy gained by this

hopping is proportional to the overlap integral, de�ned in the model as t. If the 6s valence

shell of the Bi atom is doubly occupied, the electrons will repel each other due to Coulomb

interactions. Coulomb force is ignored in our models since it is believed Coulomb forces are

small in this compound4.

The Hamiltonian is a matrix operator that describes the energy in quantum mechanics.

The Hamiltonian is of the form,

H = H0 = Ht +He�ph +Hph (1)

whereHt,He�ph, andHph, are the hopping, electron-phonon, and phonon terms, respectively.

As explained above,

Ht = �t
NX
i=1

�
cyici+1 + cyi+1ci) (2)

He�ph = �g
NX
i=1

(ui�1 � ui) c
y
ici (3)

Hph =
NX
i=1

�
1

2
ku2i

�
(4)

Energy is measured in units of the hopping parameter, t and displacements are measured in

units of
q
t=k. Therefore, the Hamiltonian can be rewritten in dimensionless units of ~u as

H = �1
NX
i=1

�
cyici+1 +HC

�
+�

p
�

NX
i=1

(~ui�1 � ~ui) c
y
ici +

NX
i=1

�
1

2
k~u2i

�
(5)

where, � = g2=kt.

The de�nition of the Hamiltonian operator allows for the use of the Shroedinger Equation

of the form

Hj�i = "�j�i (6)

in order to �nd all the eigenvectors and eigenvalues of the system.
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If the oxygen atoms were forced to be undisplaced (this occurs naturally when � = 0),

then the density of states would be similar to the diagram in Figure 2. Each eigenvalue

in the eigenvalue spectrum would have double degeneracy. However if the oxygen atoms

were allowed to be displaced, the degenerate eigenvalues would separate into two states,

with one of the two states having lower energy than the degenerate eigenstate, as shown by

Jahn-Teller. The density of states diagram of the ground state of BaBiO3 thus develops a

gap, �, between the valence band and the conduction band. (See Figure 2.) The presence

of this gap causes BaBiO3 to be a prototype d = 3 Peierls insulator.
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FIG. 2.

Ba1�xKxBiO3 remains insulating up to x = 30% doping concentration. At this level,

a metal-insulator transition occurs and BaBiO3 becomes superconducting at temperatures

below 30K, the highest superconductor transition temperature for any oxide superconductor

not containing copper(6�9). Any K concentration less than 30% is not enough for the carriers

donated by the dopants to escape being trapped into localized polaron or bi-polaron states

at or near the Fermi Level.
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II. METHODOLOGY

A. 1D Model

The model of BaBiO3 was created using computer simulation. An entire simulation was

written in the MICROSOFT VISUAL C++ language to model the solid. With bismuth

atoms assigned a �xed position, only the oxygen atoms are allowed to move in the model.

Thus, the system is fully solved when the optimum positions of the oxygen atoms are de-

termined. The optimum positions of the oxygen atoms are the positions for which the solid

has the lowest energy.

To facilitate analyzing of the data and speed computer calculations, the oxygen displace-

ments are measured in dimensionless units ~u and the spring constant k and hopping term

t are set to 1 and �1 respectively. The model has three input parameters: the number of

Bi atoms (equivalent to the number of O atoms), N , the number of electrons, Nx, and the

electron-phonon coupling constant, �. The number of holes is de�ned to be N �Nx. Hence,

when N = Nx, the system is said to have no holes, or half �lled.

After the value of each parameter is assigned, the initial positions of the oxygen atoms are

determined. This can be done in several ways. One way would be to have the oxygen atoms

undisplaced, lying at the midpoints between neighboring bismuth atoms. Random displace-

ments could be used, moving the oxygen atoms random amounts in random directions. Also,

two-fold or four-fold periodic initial positions can be used. These types of initial positions

would be more similar to the oxygen positions found in the real-world. In this project,

all four initial positions were used in simulations. With the oxygen positions determined,

the N � N Hamiltonian was constructed. Using algorithms from Numerical Recipes for

C10, the Hamiltonian matrix is diagonalized and the eigenvalues, denoted by "�, and eigen-

vectors, denoted by j�i, of the system are determined using the Shroedinger Equation (6).

An eigenvector can be written as a linear combination of the form, j�i = �j�1i + �j�2i
By convention, � and � are chosen such that �2 + �2 = 1. This relationship means that
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h�j�i = �2 + �2 = 1 When this is true, the eigenvectors are said to be normalized. One of

the important properties of normalized eigenvectors is

NX
n=1

jhnj�ij2 = 1 (7)

The energy of the solid can then be calculated as follows:

E = 2

[Nx
2
]X

�=1

"� +
NX
i=1

~u2i
2

(8)

where [x] is the greatest integer less than or equal to function. A third term, "[Nx=2]+1 has

to be added on if [Nx=2] does not equal Nx=2. Note that there is no coeÆcient of two in

front of this term since this state is only occupied by one electron, and not two.

As stated previously, the system has been solved when the energy is at the global min-

imum. The problem of global minimization has been one that has drawn the attention of

mathematicians and physicists alike. While there is no one single algorithm that works

perfectly, several algorithms have been developed that �nd accurate local minima which are

believed to be the global minimum. The algorithm that was used in this project used the

concepts of calculus. Let (~u1; ~u2; :::; ~uN) = j~ui and a function F (j~ui = E, where E is the

energy. The goal is to minimize F . It is not known for what oxygen displacements F attains

its minimum value. Let (~u01; ~u
0
2; :::; ~u

0
N) = j~u0i be the optimum oxygen displacements. Using

the Taylor Formula for multi-dimensional variables,

F (j~ui) = F
�
j~u0i

�
+

@F

@~u1

�
~u1 � ~u01

�
+

@F

@~u2

�
~u2 � ~u02

�
+

@F

@~uN

�
~uN � ~u0N

�

+
1

2!

"�
~u1 � ~u01

� @2F

@~u1~u1

�
~u1 � ~u01

�
+
�
~u1 � ~u01

� @2F

@~u1~u2

�
~u2 � ~u02

�
+ � � �

+
�
~u1 � ~u01

� @2F

@~u1~uN

�
~uN � ~u0N

�
+
�
~u2 � ~u02

� @2F

@~u2~u1

�
~u1 � ~u01

�
+ � � �

+
�
~uN � ~u0N

� @2F

@~uN ~uN

�
~uN � ~u0N

�
Let,

��!rF =

 
� @F

@~u1
;� @F

@~u2
; � � � ;� @F

@~uN

!

�!
�~u =

�
~u01 � ~u1; ~u

0
2 � ~u2; � � � ; ~u0N � ~uN

�

Aij =
@2F

@~ui@~uj

7



where,
��!rF is de�ned as the force on the oxygen atoms and

�!
�~u is de�ned as the di�erence

between successive oxygen displacements. Then,

F (j~ui) = F
�
j~u0i

�
+
���!rF�!�~u

�
+

1

2!

�!
�~uA

�!
�~u

If the partial derivative of F with respect to
�!
�~u equals zero, then j~ui = j~u0i and the optimum

solution has been found. Thus,

@F

@
�!
�~u

= 0

@F

@
�!
�~u

=
��!rF + A

�!
�~u = 0

A
�!
�~u =

��!rF
�!
�~u = A�1��!rF (9)

The Amatrix is proportional to the unit matrix when the oxygen atoms are still at the ini-

tial positions. After the �rst displacement, the Broyden-Fletcher-Goldtarb-Shanno (BFGS)

algorithm is used to calculate the A matrix. This algorithm can be found in Numerical

Recipes for C. The force, as de�ned previously, is the negative derivative of the energy.

Thus, the force on the ith oxygen atom is equal to (when Nx is even):

��!rFi = � d

d~ui

2
642

Nx

2X
�

"� +
NX
j

~u2j
2

3
75

= �
2
642

Nx

2X
�

d"�
d~ui

+ ~ui

3
75

It is now necessary to �nd the derivative of an eigenvalue with respect to the ith oxygen

displacement. Due to the symmetry of the Hamiltonian matrix, the principle of ortho-

normality can be used to �nd the required derivative. This principle states that h�0j�i = Æ,

where Æ = 1 when �0 = � and Æ = 0 otherwise. Using the Shroedinger Eq. (6),

h�jHj�i = "�h�j�i = "�

d"�
d~ui

=
d

d~ui
h�jHj�i
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Applying the chain rule for derivatives gives d"�=d~ui = h�jdH=d~uij�i+ two other terms,

which by the Feynman Theorem are known to equal zero. Since the term ~ui appears only

twice in the Hamiltonian,

dH

d~ui
=

����������������

0 � � � 0

�p� � � �
0

p
� � � �

� � � 0

����������������
Let,

j�i = (�1; �2; � � � ; �N)

Then,

*
�

�����dHd~ui
������
+
= �

p
�
�
�2
i � �2

i+1

�

Thus
��!rFi = �p� (�i � �i+1), where

�i = 2

[Nx
2
]X

j=1

(hij�ji)2 (10)

If the number of electrons is odd, then an additional term, hij�[Nx=2]+1i2 must be added.
Thus knowing the force,

��!rFi and matrix A, the displacement vector,
�!
�~u, can be calcu-

lated using Equation (9). The Hamiltonian is then reconstructed and the whole procedure

is repeated. The procedure is stopped once the scalar product of the force vector is equal

to zero, meaning the �nal oxygen atom positions have been found.

The determination of the oxygen positions allows for several interesting calculations to

be made regarding the system. The charge density describes the probability of �nding

a certain number of electrons on a particular bismuth atom. The charge, �, or electron

occupation on the ith bismuth atom is the sum of the squares of the occupied wave functions

for that particular site (10). The charge density wave (CDW) is repeated periodically charge

distribution on Bi atoms.
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Another useful and interesting calculation that can be made is the inverse participation

ratio (IPR). Given the eigenvector jai, hnjai is the amplitude of the ath wave function on

the nth atom. Hence, jhnjaij2 is the probability that an electron in the ath state is located

on the nth atom. By, taking the sum of jhnjaij4 for all values of n from 1 to N , the inverse

participation ratio of each eigenstate is found. A graph of inverse participation ratio versus

eigenvalue describes the eigenvalues spectrum as well as how localized or delocalized a state

is. For example, if every eigenstate is equally present on each site (delocalized), the IPR

would equal N � jhnjaij4 = 1=N . This is a fairly small value for large values of N . On

the other hand, if an eigenstate was very localized on one Bi atom n0, the IPR would be

approximately 1.

Two primary doping level cases are examined: half-�lled, and two holes. The value of

� in each case ranges from 0:0 to 1:0. For the half-�lled case, the relationship between �

and � is carefully studied, as well as the energy landscape of the compound. For the two

hole case, defects in the CDW and localized states in the IPR vs. Energy graph are closely

analyzed.

B. 3D Model

The primary input parameters are three translational vectors that de�ne the shape, size,

and symmetry of the lattice. The translational vectors are of the form

�A = (m1; m2; m3)

�B = (l1; l2; l3)

�C = (n1; n2; n3)

Hence,

N = abs

������������

m1 m2 m3

l1 l2 l3

n1 n2 n3

������������
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The eight vertices of the cubic lattice are the linear combinations of the three translational

vectors. Since a plane is determined by three points, choosing three vertices, (x1; y1; z1),

(x2; y2; z2), and (x3; y3; z3), the equation of each of the six planes can be found by������������

y1 z1 1

y2 z2 1

y3 z3 1

������������
x+

������������

z1 x1 1

z2 x2 1

z3 x3 1

������������
y +

������������

x1 y1 1

x2 y2 1

x3 y3 1

������������
z �

������������

x1 y1 z1

x2 y2 z2

x3 y3 z3

������������
= 0

By constructing a cube that completely encompasses the unit cell, and testing each point

inside the larger cell to determine whether it is inside the unit cell, the positions of the N

atoms are found. A point is said to be inside the unit cell if the value of the equation of the

planes, front, left, and bottom faces, is non-negative, and the value of the equation of the

planes, back, right, top faces, is negative.

To account for the hopping integral term in the Hamiltonian , the position of the neigh-

bors of each Bi atom are determined. There are a total of six neighbors; three in the positive

x, y, and z direction and three in the negative x, y, and z direction. By taking an atom and

adding/subtracting one from its x (and likewise y and z) coordinate, the neighbor of that

atom in the positive and negative x direction is found by searching for the ith Bi atom with

that coordinate. In the case of a Bi atom located on the edge of the cell, the translational

vectors were added/subtraced from the coordinate of the Bi atom. With the position of the

neighbors determined, the Hamiltonian can thus be constructed.

III. RESULTS

A. Half-Filled Case

The gap in the density of states diagram, referred to as �, is signi�cant with regard to

the compound's superconductivity since an electron has to travel across this gap to reach

the conduction band. Figure 3 is the graph of � versus �.
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Much of the energy landscape of BaBiO3 is not known. While Figure 3 shows the

energy of the compound in its ground state for di�erent values of �, there are several

meta-stable states that have interesting defects in the CDW. By assigning oxygen atoms

random initial positions, the model produced many of these higher energy states. The

defects always came in pairs; there was a positively charged defect and a negatively charged

defect which counterbalanced it. For each pair of defects, the energy the compound gained

was approximately 2:52.

B. Two Hole Case

Due to the absence of two electrons, defects or adjustments in the CDW of the compound

were forced. Every initial oxygen atom displacement vector was used and several meta-stable

states were found. The polaron state was not found at values of � less than :56. Instead, the

apparent state with the lowest energy was a two-fold periodic solution with the di�erence

between two consecutive bismuth sites less than the di�erence found in the half-�lled case

for the corresponding values of �. At � = 0:6, the use of random initial positions led to the

�nding of a polaron state divided in the middle by a single high charged bismuth site. The

energy of this state was lower than that of the polaron. The two positively charged pieces

of the polaron, are called phase slips11. By using the �nal oxygen atom displacements for

one value of � as the initial displacements for the next value of �, the phase slip solution
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was found for values of � � 0:6). It was found that as � increased, the di�erence between

the energy of the polaron and phase slip solutions also increased.
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The unexpected discovery of a solution with lower energy than the polaron led to an

examination of the wave functions on the bismuth sites near the defects of both solutions.

(See Figure 4 and Figure 5) Many interesting observations were made from these graphs.

First, the value of all the wave functions at the polaron site, or in midgap of the phase

slip solution was zero. Second, the wave functions were either odd or even. Consecutive

wave functions alternated between odd and even. The only exceptions were the N=2 and

the N=2� 1 wave functions. However, these observations did not lead to a de�nite answer

as to why the phase slip solution was of lower energy. Thus, the IPR of both the solutions
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were calculated. (See Figure 6) The intriguing aspect of this graph is the presence of several

localized states near the valence and conduction bands. It was thought that these localized

states were size defects that would disappear for a larger value of N or �. However when

this hypothesis was tested, the localized state directly to the left of the conduction band

remained.
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The need to know whether certain charge distributions, which were not being found by

the model, were meta-stable, made it necessary to manually input the site occupations and

convert the charges into initial oxygen displacements. Since,
��!rFn = �~un �

p
� (%n+1 � %n)

and the force on each atom is equal to zero when the compound is minimized, ~un =

�p� (%n+1 � %n). The phase slips were forced to collapse into the polaron state, and were

also allowed to move further apart. The table below shows the number of atoms between

the phase slips and the corresponding energy, for � = 0:6. As can be seen, the like charged

phase slips apparently repelled each other. Hence, the polaron solution was of higher energy

since the force of repulsion had to be overcome.
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Figure 7 is a graph of an exponential regression of the above data. It is known that,

dlog(E � E0)

dr
= m = �1:651

where r is the number of atoms between the phase slips and E0 is the energy of the compound

when the phase slips are in�nitely separated. In this particular case, E0 = �157:390514310.
Then, E � E0 = ve�1:651, ln(1000v) = b = 4:12, v = 4:12, which implies E(r) = E0 +

0:0616e�1:651r.
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IV. DISCUSSION AND CONCLUSION

The half-�lled case is devoid of any complications such as missing electrons. It can be

fully solved analytically using the laws of Newton and mathematical methods. To insure the

soundness of the model therefore, it is reasonable to solve the system mathematically and

compare the result to the answer generated by the model. This can be done by comparing

eigenvalues found analytically to those found numerically. If the eigenvalues are the same,

then the corresponding eigenvectors will be equal and the system is solved. Making the

assumption, ~un = (�1)n~u0 and substituting into the Hamiltonian,

H =
NX
i=1

2g~u0(�1)icyici +
NX
i=1

�
cyici+1 + cyi+1ci

�
+

N ~u20
2

As discussed previously, BaBiO3 is naturally dimerized at half-�lling. Half the bismuth

atoms in the compound have excess charge relative to the charge of the other bismuth atoms.

15



Let the bismuth atoms with excess charge be in sub-lattice A. Let the other bismuth atoms

be in sub-lattice B. Since type A atoms and type B atoms are alternating, let the A type

atoms be odd numbered. Then the Hamiltonian can be rewritten as,

H =
X
i2A

�2g~u0cAy
i cAi +

X
i2B

2g~u0c
By
i cBi +

X
i2A

�
cAy
i cBi+1 + cBy

i+1c
A
i

�
+
X
i2B

�
cBy
i cAi+1 + cAy

i+1c
B
i

�

Substitute n as the counter variable for i. Let cyn and cn undergo Fourier Transformations:

cyn =
1p
N

NX
k=1

cyke
ikn

cn =
1p
N

NX
k=1

cke
�ikn

Then,

cyncn+1 =
1p
N

NX
k1=1

cyk1e
ik1n � 1p

N

NX
k2=1

ck2e
�ik2(n+1)

NX
n=1

cyncn+1 =
NX

k1=1

NX
k2=1

1

N
cyk1ck2e

�ik2 �
NX

m=1

eik1m � e�ik2m

It is known that,

NX
n=1

ei�n =

8>><
>>:
N if � = 0

0 otherwise

Hence, let

NX
m=1

ei(k1�k2)m = NÆk1;k2

where Æk1;k2 is a function that takes on two values, 0 or 1. Then,

NX
n=1

cyncn+1 =
NX

k1=1

NX
k2=1

1

N
cyk1ck2e

�ik2 �NÆk1;k2

=
NX

k1=1

cyk1ck1e
�ik1

=
NX
k=1

cykcke
�ik

Thus,

NX
n=1

cyn+1cn =
NX
k=1

cykcke
ik
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and,

Hel�ph =
NX
k=1

cykck
�
eik + e�ik

�

=
NX
k=1

2 cos kcykck

By de�nition, the eigenvalue, �k = 2 cos k. Returning to the dimerized, A and B Hamilto-

nian,

H =
NX
k=1

h
�2g~u0cyAk cAk + 2g~u0c

yB
k cBk + 2 cos kcyAk cBk + 2 cos kcyBk cAk

i

From this two equations are derived,

�2g~u0cAk + 2 cos kcbk = �cAk

2 cos kcAk + 2g~u0c
B
k = �cBk

Solving using techniques of linear algebra,

� = �
q
(2 cos k)2 + (2g~u0)

2 (11)

where k = 2�n=N , n = 1; 2; � � � ; N � 1.

Examination of the graph of � versus � (See Figure 3.) reveals a possibility for expressing

� as a function of �. Taking the dimensionless Hamiltonian, and Eq.(10),

E = �4
jkj<�=2X

k

q
cos2 k + �~u20 +

N

2
~u20

@E

@~u0
= 0 = �4

jkj<�=2X
k

�~u0q
cos2 k + �~u20

+N ~u0

1

�
=

4

N

X
k

1q
cos2 k + �~u20

Let Æ = �=2 = ~u0
p
�. Also let �k = 2�=N . Then,

1

�
=

4

2�

X
k

�kp
cos2 k + Æ2

=
4

�

Z �=2

0
dk

1p
cos2 k + Æ2

=
4

�

Z �=2

0
dk

1p
sin2 k + Æ2
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This will �rst be solved for small values of � and hence Æ.

�=4

�
=
Z �=2

0

dkp
Æ2 + k2

+
Z �=2

0

 
1p

Æ2 + sin2 k
� 1p

Æ2 + k2

!
dk

�=4

�
�
Z �=2

0

dkp
Æ2 + k2

+
Z �=2

0

�
1

sin k
� 1

k

�
dk

�

4�
= log

�
k +

p
k2 + Æ2

� ����=20 + [log jtan k=2j � log k]
����=2
0

Evaluating this expression gives,

8e�
�

4� = � (12)

For large values of �, Æ2 � cos2 k. Hence,

1

�
=

4

N

X
k

�
1

Æ

�

� = 4� (13)

A. Further Research - Experiments with the 3D Model

The presence of slightly localized states directly to the left of the conduction band

prompted the question whether these bounded states were size defects, defects of the 1D

model, or if these states actually did exist. As previously noted, these states were not size

defects. The bipolaron trial was conducted using the 3D model, and once again these bound

states were seen in the graph of Eigenenergy v. IPR. In solving a system such as the H+
2

molecule for the charge distribution of the electron in the system, several states or solution

to the problem are obtained. However, these states di�er in energy. There is the bonding

s-state, which has only positive signs in the wave function. In order to �nd the probability

of the location of an electron, the wave function is squared. In the bonding case, there is

a non-zero probability of �nding the electron between the two H+ ions; hence this is the

bonding state. For the anti-bonding state in which the wave function changes signs, there is

zero probability of �nding the electron in between the ions; the electron is either at the left

or right ion. This system is analogous to the bipolaron case. By solving the system using

Shroedinger's Equation (6), the binding state as well as excited solutions are found. The
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ground state is the removal of two electrons from a Bi atom (the central atom). However

there are excited states, e.g. the hole is distributed half on the atom to the right of the

central atom, and half on the atom to the left. This is the p-state, where the wave function

has a change of sign, and hence the electron has zero probability of being located on the

central atom. Figure 8 shows a closer view of these bound states. Note that the three states

to the left, and two to the right appear to be grouped. The three states are the three p

orbitals, while the two states are two of the �ve d orbitals. The absence of three d orbitals is

not perplexing since in solid state physics, the atom is viewed as a cube and not as a sphere.

When this cube is rotated, is quite likely that certain characteristics (i.e. three d orbitals)

cannot be seen.

5.75 5.8 5.85 5.9 5.95 6
0

0.1

0.2

0.3

0.4

Excited Bound States

FIG. 8.

An experiment is currently being conducted using the 3D model in which an electron is

removed from the lattice and then placed back again in the lattice. It is hoped that this

experiment will reveal a great deal of information with respect to how the oxygen atoms

(particularly the atoms surrounding the polaron) react when a defect occurs in the lattice.

It is hypothesized that either the polaron will be '�lled,' or defects in the lattice structure

known as excitons will form. This experiment is an important step towards the ultimate

objective of this research: to determine the doping concentration that will cause a striped

lattice solution to form.
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