Physics 301/571: Electromagnetic Theory I

Read: Griffiths chapter 2.4-2.5, 3.2

“G” refers to Griffiths’ book.
Problems with stars are not for credit and will NOT be graded.

Homework 5

Exercise 1
Eight particles of mass \(m \) and electric charge \(-q\) each are placed in corners of a cube and released. Find the velocity of each charge at infinity. The length of the edge of the cube is \(a \).

Exercise 2 (G 2.35)
A metal sphere of radius \(R \), carrying charge \(q \), is surrounded by a thick concentric metal shell (inner radius \(a \), outer radius \(b \)). The shell carries no net charge.

a) Find the surface charge density \(\sigma \) at \(R \), at \(a \), and at \(b \).

b) Find the potential at the center, using infinity as the reference point.

c) Now the outer surface is touched to a grounding wire, which lowers its potential to zero (same as infinity). How do your answers to (a) and (b) change?

Exercise 3 (G 2.38)
A metal sphere of radius \(R \) carries a total charge \(Q \). What is the force of repulsion between the “northern” and “southern” hemisphere?

*Exercise 4 (G 2.39)
Find the capacitance per unit length of two coaxial (very long) metal cylindrical tubes, of radii \(a \) and \(b \).
Exercise 5

What is the minimal work required to move a point charge q from the center of a thick concentric metal shell (inner radius a, outer radius b) to infinity. Assume that there is a small hole in the shell.

Exercise 6 (2d electron gas)

Two electrons are confined to a two-dimensional xy plane (can freely move along the plane, but have a fixed coordinate $z = 0$). There is an infinite conducting plane (gate) parallel to the xy plane at the distance a from the latter ($z = a$). Find the “effective” force between electrons at distances $r \gg a$. Take into account the “screening” by image charges.