Physics 503: Methods of Mathematical Physics

Read: CKP chapter 1

“CKP” refers to Carrier, Krook, and Pearson book.
Problems with stars are not for credit and will NOT be graded.

Homework 1

Exercise 1

Calculate real and imaginary parts of the following complex numbers:

\[a) \quad 2 + \sqrt{17}i \quad b) \quad (\sqrt{2} - \sqrt{3}i)^2 \quad c) \quad \frac{2+3i}{5-i} \]
\[d) \quad \left(\frac{1+i}{3}\right)^7 \quad e) \quad (2+5i)^{30} \quad f) \quad \left(\frac{1+i}{3}\right)^{17} + (2+5i)^{30} \]

Exercise 2

Find \(\sin(3\theta) \) in terms of \(\sin \theta \) using de Moivre’s formula and identity \(\sin^2 \theta = 1 - \cos^2 \theta \).

*Exercise 3

Consider the sequence defined by recurrent relation and initial conditions.

\[F_k = 2F_{k-1} - 2F_{k-2}, \]
\[F_0 = 1, \]
\[F_1 = 5. \]

Write down the geometric sequence ansatz and find the roots of the corresponding quadratic equation. Write down the formula for \(F_k \) using initial conditions. Analyze the result using de Moivre’s formula. What is the value (order of magnitude) of \(F_{103} \)?

*Exercise 4 (CKP, page 5, problem 6)

Find the value of the following sum in a compact form

\[1 + r \cos \theta + r^2 \cos 2\theta + \ldots + r^n \cos n\theta. \]

Hint: Write it as a real part of a complex geometric sequence using de Moivre’s formula, sum it up, and find the real part of the result.
Exercise 5

Calculate real and imaginary parts of the principal value of the following complex numbers:

\[a) \ln(1 + \sqrt{3}i) \quad b) \ln(-5) \]
\[c) 2^{-i} \quad d) (1 - 3i)^{1/3} \]

Exercise 6

Find “all” multiple values (in arbitrary form) of the following expressions

\[a) \ln(1 + \sqrt{3}i) \quad b) 1^{3/5} \quad c) (1 + \sqrt{3}i)^{1/3} \]
\[d) \left(z^{1/2}\right)^{1/3} \quad e) \left(z^{5/2}\right)^{2/5} \quad f) \ln(\ln i) \]

*Exercise 7

Show that the cross-ratio is an invariant of fractional transformation, i.e., that

\[
\frac{(w_1 - w_2)(w_3 - w_4)}{(w_1 - w_3)(w_2 - w_4)} = \frac{(z_1 - z_2)(z_3 - z_4)}{(z_1 - z_3)(z_2 - z_4)}
\]

when \(w = \frac{az+b}{cz+d} \).

Exercise 8 (CKP, page 19, problem 1)

Use the cross-ratio to obtain a mapping which transforms the upper-half \(z \) plane into the interior of the unit circle in the \(w \) plane. Sketch the \(w \) images of various points and curves in the \(z \) plane, and vice versa. (Hint: Replace \(z_1, w_1 \) by \(z, w \); set \(z_2, z_3, z_4 \) equal to \(-1, 0, 1\), etc. Or use point at infinity.)

*Exercise 9 (CKP, page 24, problem 13a)

Discuss the branch cut and Riemann-surface situation for the following function

\[g(z) = \sqrt{1 + \sqrt{z}}. \]