Homotopy groups used in physics. For PHY 503.

Sasha Abanov
Department of Physics Astronomy, Stony Brook University, Stony Brook, NY 11794-3800, U.S.A.

(Dated: December 12, 2002)

APPENDIX A: HOMOTOPY GROUPS

1. Generalities

If M and N are two topological spaces then for their direct product we have

$$
\pi_{k}(M \times N)=\pi_{k}(M) \times \pi_{k}(N)
$$

If M is a simply-connected topological space $\left(\pi_{0}(M)=\pi_{1}(M)=0\right)$ and group H acts on M then one can form topological space M / H identifying points of M which can be related by some element of $H(x \equiv h x)$. We have

$$
\pi_{1}(M / H)=\pi_{0}(H)
$$

In particular, if H is a discrete group $\pi_{0}(H)=H$ and

$$
\pi_{1}(M / H)=H
$$

For higher homotopy groups we have

$$
\pi_{k}(M / H)=\pi_{k}(M), \quad \text { if } \pi_{k}(H)=\pi_{k-1}(H)=0
$$

2. Homotopy groups of spheres

For a circle

$$
\begin{aligned}
& \pi_{1}\left(S^{1}\right)=Z, \\
& \pi_{k}\left(S^{1}\right)=0, \quad \text { for } k \geq 2
\end{aligned}
$$

For higher-dimensional spheres it is true that

$$
\begin{aligned}
& \pi_{n}\left(S^{n}\right)=Z, \\
& \pi_{k}\left(S^{n}\right)=0, \quad \text { for } k<n .
\end{aligned}
$$

Homotopy groups of spheres $\pi_{n+k}\left(S^{n}\right)$ do not depend on n for $n>k+1$ (homotopy groups stabilize). In the table below we shade the cell from which homotopy groups remain constant (along the diagonal).

Homotopy groups of spheres																	
	π_{1}	π_{2}	π_{3}	π_{4}	π_{5}	π_{6}	π_{7}	π_{8}	π_{9}	π_{10}	π_{11}	π_{12}					
S^{1}	Z	0	0	0	0	0	0	0	0	0	0	0					
S^{2}	0	Z	Z	Z_{2}	Z_{2}	Z_{12}	Z_{2}	Z_{2}	Z_{3}	Z_{15}	Z_{2}	$Z_{2} \times Z_{2}$					
S^{3}	0	0	Z	Z_{2}	Z_{2}	Z_{12}	Z_{2}	Z_{2}	Z_{3}	Z_{15}	Z_{2}	$Z_{2} \times Z_{2}$					
S^{4}	0	0	0	Z	Z_{2}	Z_{2}	$Z \times Z_{12}$	$Z_{2} \times Z_{2}$	$Z_{2} \times Z_{2}$	$Z_{24} \times Z_{3}$	Z_{15}	Z_{2}					
S^{5}	0	0	0	0	Z	Z_{2}	Z_{2}	Z_{24}	Z_{2}	Z_{2}	Z_{2}	Z_{30}					
S^{6}	0	0	0	0	0	Z	Z_{2}	Z_{2}	Z_{24}	0	Z	Z_{2}					
S^{7}	0	0	0	0	0	0	Z	Z_{2}	Z_{2}	Z_{24}	0	0					
S^{8}	0	0	0	0	0	0	0	Z	Z_{2}	Z_{2}	Z_{24}	0					

Here and thereon we denote Z the group isomorphic to the group of integer numbers with respect to an addition. Z_{n} is a finite Abelian cyclic group. It can be thought of as a group of n-th roots of unity with respect to a multiplication. Alternatively, it is isomorphic to a group of numbers $\{0,1,2, \ldots, n-1\}$ with respect to an addition modulo n. Or simply $Z_{n}=Z / n Z$.

3. Homotopy groups of Lie groups

a. Unitary groups

Bott periodicity theorem for unitary groups: for $k>1, n \geq \frac{k+1}{2}$

$$
\pi_{k}(U(n))=\pi_{k}(S U(n))= \begin{cases}0, & \text { if } k \text {-even } \\ Z, & \text { if } k \text {-odd }\end{cases}
$$

The fundamental group $\pi_{1}(S U(n))=0$ and $\pi_{1}(U(n))=1$ for all n.
In the following table we shade the cells from which Bott periodicity theorem "starts working".

Homotopy groups of unitary groups												
	π_{1}	π_{2}	π_{3}	π_{4}	π_{5}	π_{6}	π_{7}	π_{8}	π_{9}	π_{10}	π_{11}	π_{12}
$U(1)$	Z	0	0	0	0	0	0	0	0	0	0	0
$U(2)$	0	0	Z	Z_{2}	Z_{2}	Z_{12}	Z_{2}	Z_{2}	Z_{3}	Z_{15}	Z_{2}	$Z_{2} \times Z_{2}$
$U(3)$	0	0	Z	0	Z	Z_{6}						
U(4)	0	0	Z	0	Z	0	Z					
$U(5)$	0	0	Z	0	Z	0	Z	0	Z			

b. Orthogonal groups

Bott periodicity theorem for orthogonal groups: for $n \geq k+2$

$$
\pi_{k}(O(n))=\pi_{k}(S O(n))= \begin{cases}0, & \text { if } k=2,4,5,6(\bmod 8) \\ Z_{2}, & \text { if } k=0,1(\bmod 8) \\ Z, & \text { if } k=3,7(\bmod 8)\end{cases}
$$

In the following table we shade the cells from which Bott periodicity theorem "starts working".

Homotopy groups of orthogonal groups												
	π_{1}	π_{2}	π_{3}	π_{4}	π_{5}	π_{6}	π_{7}	π_{8}	π_{9}	π_{10}	π_{11}	π_{12}
$S O(2)$	Z	0	0	0	0	0	0	0	0	0	0	0
$S O(3)$	Z_{2}	0	Z	Z_{2}	Z_{2}	Z_{12}	Z_{2}	Z_{2}	Z_{3}	Z_{15}	Z_{2}	$\left(Z_{2}\right)^{\times 2}$
$S O(4)$	Z_{2}	0	$(Z)^{\times 2}$	$\left(Z_{2}\right)^{\times 2}$	$\left(Z_{2}\right)^{\times 2}$	$\left(Z_{12}\right)^{\times 2}$	$\left(Z_{2}\right)^{\times 2}$	$\left(Z_{2}\right)^{\times 2}$	$\left(Z_{3}\right)^{\times 2}$	$\left(Z_{15}\right)^{\times 2}$	$\left(Z_{2}\right)^{\times 2}$	$\left(Z_{2}\right)^{\times 4}$
$S O(5)$	Z_{2}	0	Z	Z_{2}	Z_{2}	0	Z	0	0	Z_{120}	Z_{2}	$\left(Z_{2}\right)^{\times 2}$
SO(6)	Z_{2}	0	Z	0	Z	0	Z	Z_{24}	Z_{2}	$Z_{120} \times Z_{2}$	Z_{4}	Z_{60}
$S O(n), n>6$	Z_{2}	0	Z	0	0	0						

c. Symplectic groups

Bott periodicity theorem for symplectic groups: for $n \geq \frac{k-1}{4}$

$$
\pi_{k}(S p(n))= \begin{cases}0, & \text { if } k=0,1,2,6(\bmod 8) \\ Z_{2}, & \text { if } k=4,5(\bmod 8) \\ Z, & \text { if } k=3,7(\bmod 8)\end{cases}
$$

In the following table we shade the cells from which Bott periodicity theorem "starts working".

Homotopy groups of symplectic groups												
	π_{1}	π_{2}	π_{3}	π_{4}	π_{5}	π_{6}	π_{7}	π_{8}	π_{9}	,	π_{11}	π_{12}
Sp(1)	0	0	Z	Z_{2}	Z_{2}	Z_{12}	Z_{2}	Z_{2}	Z_{3}	Z_{15}	Z_{2}	$Z_{2} \times Z_{2}$
Sp(2)	0	0	Z	Z_{2}	Z_{2}	0	Z	0	0	Z_{120}	Z_{2}	$Z_{2} \times Z_{2}$
Sp(3)	0	0	Z	Z_{2}	Z_{2}	0	Z	0	0	0	Z	Z_{2}
Sp(4)	0	0	Z	Z_{2}	Z_{2}	0	Z	0	0	0	Z	Z_{2}
Sp(5)	0	0	Z	Z_{2}	Z_{2}	0	Z	0	0	0	Z	Z_{2}

d. Exceptional groups

| Homotopy groups of exceptional groups | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | π_{1} | π_{2} | π_{3} | π_{4} | π_{5} | π_{6} | π_{7} | π_{8} | π_{9} | π_{10} | π_{11} | π_{12} |
| G_{2} | 0 | 0 | Z | 0 | 0 | Z_{3} | 0 | Z_{2} | Z_{6} | 0 | $Z \times Z_{2}$ | 0 |
| F_{4} | 0 | 0 | Z | 0 | 0 | 0 | 0 | Z_{2} | Z_{2} | 0 | $Z \times Z_{2}$ | 0 |
| E_{6} | 0 | 0 | Z | 0 | 0 | 0 | 0 | 0 | Z | 0 | Z | Z_{12} |
| E_{7} | 0 | 0 | Z | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Z | Z_{2} |
| E_{8} | 0 | 0 | Z | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

4. Homotopy groups of some other spaces

a. Tori
n-dimensional torus can be defined as a direct product of n circles $T^{n}=\left(S^{1}\right)^{\times n}$. One can immediately derive that

$$
\begin{aligned}
& \pi_{1}\left(T^{n}\right)=(Z)^{\times n} \\
& \pi_{k}\left(T^{n}\right)=0, \text { for } k \geq 2
\end{aligned}
$$

b. Projective spaces

The real projective space $R P^{n}$ can be represented as $R P^{n}=S^{n} / Z_{2}$. Therefore, $R P^{1}=S^{1}$ and we have:

$$
\begin{aligned}
\pi_{1}\left(R P^{1}\right) & =Z, \\
\pi_{1}\left(R P^{n}\right) & =Z_{2}, \quad \text { for } n \geq 2 \\
\pi_{k}\left(R P^{n}\right) & =\pi_{k}\left(S^{n}\right), \quad \text { for } k \geq 2
\end{aligned}
$$

Homotopy groups of real projective spaces															
	π_{1}	π_{2}	π_{3}	π_{4}	π_{5}	π_{6}	π_{7}	π_{8}	π_{9}	π_{10}	π_{11}	π_{12}			
$R P^{1}$	Z	0	0	0	0	0	0	0	0	0	0	0			
$R P^{2}$	Z_{2}	Z	Z	Z_{2}	Z_{2}	Z_{12}	Z_{2}	Z_{2}	Z_{3}	Z_{15}	Z_{2}	$Z_{2} \times Z_{2}$			
$R P^{3}$	Z_{2}	0	Z	Z_{2}	Z_{2}	Z_{12}	Z_{2}	Z_{2}	Z_{3}	Z_{15}	Z_{2}	$Z_{2} \times Z_{2}$			
$R P^{4}$	Z_{2}	0	0	Z	Z_{2}	Z_{2}	$Z \times Z_{12}$	$Z_{2} \times Z_{2}$	$Z_{2} \times Z_{2}$	$Z_{24} \times Z_{3}$	Z_{15}	Z_{2}			

Similarly for complex projective spaces $C P^{n}$ we have $C P^{1}=S^{2}$ and generally $C P^{n}=S^{2 n+1} / S^{1}$. We have for homotopy groups

$$
\begin{aligned}
\pi_{1}\left(C P^{n}\right) & =0 \\
\pi_{2}\left(C P^{n}\right) & =Z \\
\pi_{k}\left(C P^{n}\right) & =\pi_{k}\left(S^{2 n+1}\right), \quad \text { for } k \geq 3
\end{aligned}
$$

Homotopy groups of complex projective spaces

	π_{1}	π_{2}	π_{3}	π_{4}	π_{5}	π_{6}	π_{7}	π_{8}	π_{9}	π_{10}	π_{11}	π_{12}
$C P^{1}$	0	Z	Z	Z_{2}	Z_{2}	Z_{12}	Z_{2}	Z_{2}	Z_{3}	Z_{15}	Z_{2}	$Z_{2} \times Z_{2}$
$C P^{2}$	0	Z	0	0	Z	Z_{2}	Z_{2}	Z_{24}	Z_{2}	Z_{2}	Z_{2}	Z_{30}
$C P^{3}$	0	Z	0	0	0	0	Z	Z_{2}	Z_{2}	Z_{24}	0	0
$C P^{4}$	0	Z	0	0	0	0	0	0	Z	Z_{2}	Z_{2}	Z_{24}

[1] B.A. Dubrovin, A.T. Fomenko, S.P. Novikov, Modern Geometry-Methods and Applications : Part II, the Geometry and Topology of Manifolds (Graduate Texts in Mathematics, Vol 104), Springer Verlag, 1985, ISBN: 0387961623.
[2] M. Monastyrsky and O. Efimov, Topology of gauge fields and condensed matter, Plenum Pub., 1993.
[3] Mikio Nakahara, Geometry, Topology, and Physics, 3rd edition, Cambridge, Massachusetts, MIT press, 1987, ISBN: 0852740956.
[4] K. Ito, Encyclopedic dictionary of mathematics, 3rd edition, Cambridge, Massachusetts, MIT press (1987) Appendix A, table 6.

