Physics 503: Methods of Mathematical Physics

Read: CKP chapter 1

"CKP" refers to Carrier, Krook, and Pearson book. Problems with stars are not for credit and will NOT be graded.

Homework 1

Exercise 1

Calculate real and imaginary parts of the following complex numbers:

a)
$$2 + \sqrt{17}i$$

b)
$$(\sqrt{2} - \sqrt{3}i)^2$$

$$c) \frac{2+3i}{5-i}$$

$$d$$
) $\left(\frac{1+i}{5}\right)^{17}$

$$e) (2+5i)^{30}$$

a)
$$2 + \sqrt{17}i$$
 b) $(\sqrt{2} - \sqrt{3}i)^2$ c) $\frac{2+3i}{5-i}$ d) $\left(\frac{1+i}{5}\right)^{17}$ e) $(2+5i)^{30}$ f) $\left(\frac{1+i}{5}\right)^{17} + (2+5i)^{30}$

Exercise 2

Find $\sin(3\theta)$ in terms of $\sin\theta$ using de Moivre's formula and identity $\sin^2\theta=1$ $\cos^2 \theta$.

Exercise 3

Consider the sequence defined by recurrent relation and initial conditions.

$$F_k = 2F_{k-1} - 2F_{k-2},$$

$$F_0 = 1,$$

$$F_1 = 5.$$

Write down the geometric sequence ansatz and find the roots of the corresponding quadratic equation. Write down the formula for F_k using initial conditions. Analyze the result using de Moivre's formula. What is the value (order of magnitude) of F_{103} ?

*Exercise 4(CKP, page 5, problem 6)

Find the value of the following sum in a compact form

$$1 + r\cos\theta + r^2\cos 2\theta + \ldots + r^n\cos n\theta.$$

Hint: Write it as a real part of a complex geometric sequence using de Moivre's formula, sum it up, and find the real part of the result.

*Exercise 5

Calculate real and imaginary parts of the principal value of the following complex numbers:

a)
$$\ln(1+\sqrt{3}i)$$
 b) $\ln(-5)$
c) 2^{-i} d) $(1-3i)^{1/3}$

$$b)$$
 $\ln(-5)$

$$(c)$$
 2^{-c}

$$\vec{d}$$
) $(1-3i)^{1/3}$

Exercise 6

Find "all" multiple values (in arbitrary form) of the following expressions

b)
$$1^{3/5}$$

c)
$$(1+\sqrt{3}i)^{1/2}$$

$$d) \quad \left(z^{1/2}\right)^{1/3}$$

$$(z^{5/2})^{2/5}$$

$$f$$
) $\ln(\ln i)$

*Exercise 7

Show that the cross-ratio is an invariant of fractional transformation, i.e., that

$$\frac{(w_1 - w_2)(w_3 - w_4)}{(w_1 - w_3)(w_2 - w_4)} = \frac{(z_1 - z_2)(z_3 - z_4)}{(z_1 - z_3)(z_2 - z_4)}$$

when $w = \frac{az+b}{cz+d}$.

Exercise 8(CKP, page 19, problem 1)

Use the cross-ratio to obtain a mapping which transforms the upper-half z plane into the interior of the unit circle in the w plane. Sketch the w images of vaious points and curves in the z plane, and vice versa. (Hint: Replace z_1 , w_1 by z, w; set z_2, z_3, z_4 equal to -1, 0, 1, etc. Or use point at infinity.)

*Exercise 9(CKP, page 24, problem 13a)

Discuss the branch cut and Riemann-surface structure for the following function

$$g(z) = \sqrt{1 + \sqrt{z}}.$$