Physics 503: Methods of Mathematical Physics

Read: CKP chapter 2, sections 2-1 — 2-5.

"CKP" refers to Carrier, Krook, and Pearson book. Problems with stars are not for credit and will NOT be graded.

Homework 2

Exercise 1 (CKP, page 29, problem 2)

Verify the Cauchy-Riemann equations for $(1-z^2)^{1/2}$. At what points this function has singularities?

Exercise 2 (CKP, page 29, problem 2)

Prove in an easy way that $(x^2 + y^2)^{1/4} \cos\left(\frac{1}{2}\arctan\frac{y}{x}\right)$ is harmonic.

*Exercise 3 (CKP, page 30, problem 7)

If u and v are expressed in terms of polar coordinates (r, θ) , show that the Cauchy-Riemann equations can be written

$$u_r = \frac{1}{r}v_\theta, \qquad \frac{1}{r}u_\theta = -v_r.$$

Exercise 4 (CKP, page 36, problem 3)

Show in an easy way that the integral of each of the following expressions around the circle |z| = 1/2 vanishes:

a)
$$\frac{z+1}{z^2+z+1}$$
, b) $e^{z^2} \ln(1+z)$, c) $\arcsin z$.

Exercise 5 (CKP, page 40, problem 1)

Use Cauchy's integral formula to evaluate the integral around the unit circle (|z|=1) of

a)
$$\frac{\sin z}{2z+i}$$
, b) $\frac{\ln(z+2)}{z+2}$, c) $\frac{z^3 + \arcsin(z/2)}{z^2 + iz + i}$.

Exercise 6

Find the principal value of the integral $\int_C \frac{\sin z}{z^2} dz$ where counterclockwise contour C is a square ABDF with $A=0,\ B=2\pi,\ D=2\pi(1+i),\ {\rm and}\ F=2\pi i.$

*Exercise 7 (CKP, page 43, problem 1)

Find the maximum for $|z| \leq 1$ of functions

a)
$$|z^2 + 2z + i|$$
, b) $|\sin(z)|$, c) $|\arcsin(\frac{z}{2}|$.

b)
$$|\sin(z)|$$
,

c)
$$|\arcsin \frac{z}{2}|$$
.

*Exercise 8

Show that the Cauchy-Riemann equations for modulus and argument of function $f(z) = |f|e^{i\theta}$ can be written in the form

$$(\ln|f|)_x = \theta_y,$$
 $(\ln|f|)_y = -\theta_x.$