Physics 503: Methods of Mathematical Physics

Read: CKP chapter 4, sections 4-1-4-5.
"CKP" refers to Carrier, Krook, and Pearson book.
Problems with stars are not for credit and will NOT be graded.

Homework 4

Exercise 1

Find the nature of each singularity (including the point at infinity) of each of the following functions.
a) $\frac{e^{1 /(z-1)}}{e^{z}-1}$,
b) $\frac{1}{(\sin z+\cos z)^{3}}$,
c) $z^{2} e^{-z}$,
d) $\frac{z^{2 n}}{\left(1+z^{n}\right)^{2}}$,
e) $\frac{\ln (z-1)}{(z+1)^{2}}$.

Evaluate the residues at each isolated singularity. Always include the point at ∞ in your considerations.

The following problems are all two-dimensional. Charge means $2 d$ charge etc.

Exercise 2

Find the equipotentials, streamlines, and vector intensity $(\vec{\nabla} \phi)$ for the field whose complex potential $\Omega=\frac{1}{z^{2}}$.

Exercise 3

The equipotential lines of a fluid are the circles $x^{2}+y^{2}=2 a x$ (for any a). Find the ratio of the magnitudes of the intensity of the field at the points $(2 a, 0)$ and (a, a).

Exercise 4: Method of images

Find the force acting on electric charge q (force is equal $-q \vec{\nabla} \phi$) inside the right angle corner surrounded by metal (see figure).

*Exercise 5: Streamlining the parabola

Find the velocity field for the flow streamlining the parabolic surface given by $y^{2}=$ $2 p x$ with the given velocity at infinity $v(x \rightarrow-\infty)=v_{\infty}$ (see figure).

Hint: use the mapping $\zeta=\sqrt{z-\frac{p}{2}}$.

Figure 1: Figure to exercise 4

Figure 2: Figure to exercise 5

Figure 3: Figure to exercise 8

Exercise 6 (CKP, page 159, problem 1)

a) Show that Joukowsky transformation $z=\frac{1}{2} a\left(\zeta+\frac{1}{\zeta}\right)$ can be expressed in the useful alternative form $\frac{z-a}{z+a}=\left(\frac{\zeta-1}{\zeta+1}\right)^{2}$.
b) Show that the transformation doubles angles at the points $\zeta= \pm 1$.

Exercise 7

Using Joukowsky transformation find how a uniform electric field $\vec{E}=-\vec{\nabla} \phi=$ const is perturbed by metal circle of unit radius.

Exercise 8

Find the complex potential for the plane flow of a fluid flowing from the left halfplane into the right half-plane through an aperture in the imaginary axis between the points $-i$ and i (see figure). The net flow across the aperture is $Q\left(=\int_{-1}^{1} \phi_{x} d y\right)$.

Hint: Consider $\zeta=\ln \left(z+\sqrt{z^{2}+1}\right)$ with properly chosen branching lines.

*Exercise 9

Find the electric field (complex intensity $\Omega^{\prime}(z)$) produced by a metal square of size a (see figure) and charge q at distanses $|z| \gg a$. Keep the next to a leading term in

Figure 4: Figure to exercise 9

the expansion in $a /|z|$.
Hint: Use the Schwartz-Christoffel mapping to the exterior of the unit circle. Expand in $a /|z|$.

