Physics 503: Methods of Mathematical Physics

Read: CKP sections 5-1, 5-5, 6-4.
 BO sections 6.5.

“CKP” refers to Carrier, Krook, and Pearson book.
“BO” refers to Bender and Orszag book.
Problems with stars are not for credit and will NOT be graded.

Homework 7

Exercise 1
Calculate the following integral (exactly)
\[\int_{0}^{\infty} e^{-ax} J_n(bx) \, dx. \]

Hint: You can use the generating function for Bessel functions. First calculate the integral over \(x \) and then find the coefficient in Laurent series in \(t \) using the closed contour integral in \(t \)-plane.

*Exercise 2
Calculate the following integral (exactly)
\[\int_{0}^{\infty} \frac{e^{-px} \, dx}{\sqrt{x(x+a)}}. \]

Here \(a > 0, \ p > 0. \)

Hint: The answer is given in terms of Macdonald’s function.

*Exercise 3 (CKP, page 230, problem 7a)
Show that
\[K_\nu(z)I_{\nu+1}(z) + K_{\nu+1}(z)I_\nu(z) = \frac{1}{z}. \]

Hint: Use recurrence relations for I and K derived from the ones for J.
Exercise 4 (BO 6.56de)

Use the method of stationary phase to find the leading behavior of the following integrals as $x \to +\infty$:

\[a) \quad I(x) = \int_0^1 \sin \left[x \left(t + \frac{t^3}{6} - \sinh t \right) \right] \, dt, \]

\[b) \quad I(x) = \int_{-1}^1 \sin [x(t - \sin t)] \sinh t \, dt. \]

*Exercise 5

Find the nature of each singularity (including the point at infinity) of each of the following functions.

\[a) \quad \frac{\sqrt{z(1-z)}}{(e^z - 3)^2}, \quad b) \quad z^2 e^{\frac{z}{2}}. \]

Evaluate the residues at each isolated singularity. Always include the point at ∞ in your considerations.

Exercise 6

Evaluate the following integral

\[I = \int_0^\infty \frac{\sin ax}{x(1 + x^4)} \, dx. \]

Exercise 7

Find the flow of a fluid (complex potential) in the sector $0 < \arg z < \pi/3$ produced by a source of strength Q concentrated at the point $z_0 = ae^{i\pi/6}$.

Exercise 8

Find the leading behavior of the following integral as $x \to +\infty$.

\[\int_{-1}^1 \cos \left[x \left(1 - \frac{t^2}{2} - \cos t \right) \right] (\cosh t - 1) \, dt. \]

*Exercise 9

Nematic is a liquid crystal characterized by an order parameter which is the unit three-component vector $\vec{n} = (n_1, n_2, n_3)$, $\vec{n}^2 = 1$ with an additional condition $\vec{n} \sim -\vec{n}$. The latter means that two unit vectors which are opposite to each other describe the same state.

What types of topological defects and textures are allowed for three-dimensional nematic? What about two-dimensional one?
Exercise 10

The Poisson’s summation formula is

\[\sum_{n \in \mathbb{Z}} f(n) = \sum_{m \in \mathbb{Z}} \tilde{F}(2\pi m), \]

where the Fourier transform is defined as

\[\tilde{F}(\omega) = \int_{-\infty}^{+\infty} f(t)e^{-i\omega t} dt. \]

a) Prove the Poisson’s formula.
b) Find the leading behavior of the following sum as \(A \to +0 \) using the Poisson’s formula.

\[\sum_{n \in \mathbb{Z}} e^{-\frac{A}{2}(n-\bar{n})^2}. \]

The problems referred to as FS are taken from the book: