Physics 503: Methods of Mathematical Physics

Read: CKP chapter 2, sections 2-1 — 2-7.

"**CKP**" refers to Carrier, Krook, and Pearson book. Problems with stars are not for credit and will NOT be graded.

Homework 2

*Exercise 1 (CKP, page 29, problem 2)

Verify the Cauchy-Riemann equations for $(1 - z^2)^{1/2}$. At what points this function has singularities?

Exercise 2 (CKP, page 29, problem 2)

Prove in an easy way that $(x^2 + y^2)^{1/4} \cos\left(\frac{1}{2} \arctan \frac{y}{x}\right)$ is harmonic.

*Exercise 3 (CKP, page 30, problem 7)

If u and v are expressed in terms of polar coordinates (r, θ) , show that the Cauchy-Riemann equations can be written

$$u_r = \frac{1}{r} v_{\theta}, \qquad \frac{1}{r} u_{\theta} = -v_r.$$

Exercise 4 (CKP, page 36, problem 3)

Show in an easy way that the integral of each of the following expressions around the circle |z| = 1/2 vanishes:

a) $\frac{z+1}{z^2+z+1}$, b) $e^{z^2}\ln(1+z)$, c) $\arcsin z$.

Exercise 5 (CKP, page 40, problem 1)

Use Cauchy's integral formula to evaluate the integral around the unit circle (|z| = 1) of

a)
$$\frac{\sin z}{2z+i}$$
, b) $\frac{\ln(z+2)}{z+2}$, c) $\frac{z^3 + \arcsinh(z/2)}{z^2 + iz+i}$.

Exercise 6

Find the principal value of the integral $\int_C \frac{\sin z}{z^2} dz$ where counterclockwise contour C is a square ABDF with A = 0, $B = 2\pi$, $D = 2\pi(1+i)$, and $F = 2\pi i$.

*Exercise 7 (CKP, page 43, problem 1)

Find the maximum for $|z| \leq 1$ of functions

a)
$$|z^2 + 2z + i|$$
, b) $|\sin(z)|$, c) $|\arcsin\frac{z}{2}|$.

Exercise 8

Show that the Cauchy-Riemann equations for modulus and argument of function $f(z) = |f|e^{i\theta}$ can be written in the form

$$(\ln |f|)_x = \theta_y, \qquad (\ln |f|)_y = -\theta_x.$$

*Exercise 9 (CKP, page 56, problem 3)

Expand in powers of z the function $\sin(z+1/z)$ in whatever annual region is closest to the origin. Express the coefficients as simple (purely real) trigonometric integrals.

Exercise 10

Discuss the character of the singularities of functions

a) $\frac{1}{(z^2+2)^2(z-i)}$, b) $\cot^2(z)$, c) $\frac{1}{\sin z^2}$, d) $\frac{1}{(z^2-1)^{1/2}+z+i}$.

Include the point at ∞ in your considerations.

Exercise 11

Discuss the character of the singularities of the following functions (a > 0)

a) $\frac{1}{z^2+a^2}$, b) $\frac{z^2}{z^2+a^2}$, c) $\frac{\sin(1/z)}{z^2+a^2}$, d) $\frac{ze^{iz}}{z^2-a^2}$.

Always include the point at ∞ in your considerations. Evaluate the residues at isolated singularities (and at ∞ if it is possible).

*Exercise 12

Same as in Ex.11.