Homework 4

Problem 1
A Hamiltonian of some quantum system is given by
\[H = -e^{i\Phi/3}|2\rangle\langle 1| - e^{i\Phi/3}|3\rangle\langle 2| - e^{i\Phi/3}|1\rangle\langle 3| + \text{h.c.}, \]
where the states |1\rangle, |2\rangle and |3\rangle for an orthonormal basis in the Hilbert space of the system, \(\Phi \) is some real number and “h.c.” means Hermitian conjugate.

a) Find the spectrum of this Hamiltonian.
b) Find the eigenstates of this Hamiltonian.
c) Find a time-dependent solution |\Psi(t)\rangle of the Schrödinger equation with this Hamiltonian corresponding to an initial state |\Psi(0)\rangle = |1\rangle.

Problem 2
a) Find the potential profile \(U(x) \) for which the following wavefunction,
\[\Psi(x,t) = Ce^{-ax^2 - ibt}. \]
(with real and constant \(a > 0 \) and \(b \)), satisfies the Schrödinger equation for a particle with mass \(m \).
b) Normalize the wavefunction to \(P = 1 \), find \(\langle x \rangle \), \(\langle p_x \rangle \), \(\delta x \), and \(\delta p_x \), and compare the product \(\delta x \delta p_x \) with Heisenberg’s uncertainty relation.

Problem 3
A quantum particle of the mass \(m \) moves in an infinite potential well \(U(x) = 0 \) if \(-a < x < a\) and \(U(x) = \infty \) if \(|x| > a\).

a) Write down the spectrum \(E_n \) and normalized eigenfunctions \(\psi_n(x) \), \(n = 0, 1, 2, \ldots \) for this system.
b) What is the force exerted by a particle on the walls of the potential well?
c) Suppose that the particle is initially in the (unnormalized) state \(\psi(x, t = 0) = x \). What is the probability to find the particle in the ground state \((n = 0) \) in time \(t \)? What is the probability to find the particle in the first excited state \(n = 1 \) in time \(t \)? What is the probability to find this particle in the state \(n = 24 \) at the same time?

Problem 4
A quantum particle of the mass \(m \) moves in a potential well \(U(x) = -U_0 \) if \(-a < x < a\) and \(U(x) = 0 \) if \(|x| > a\). Here \(U_0 > 0 \) is some constant.

a) Write down the equations determining the spectrum and eigenstates of bound states in this problem. (the equations are transcendental and can be solved only numerically in this case).
b) In the limit of a very shallow well \(U_0 \ll \frac{\hbar^2}{2ma^2} \) find an approximate energy of the ground state. How many bound states do exist in this case?
c) Write down an approximate wave function of the ground state in the case of a very shallow well.