Homework 11

Exercise 1
Determine the deformation of a long rod (with length L) rotating with frequency Ω around its end (the axis of rotation is orthogonal to the rod).

Exercise 2
Calculate the deformation law $h(x)$ for a thin, heavy, elastic board which is weakly bent by the Earth gravity (see Figure 1). Assume that the Young’s modulus E, the mass of the board, and its dimensions are known. How does the maximal deflection of the board scale with L?

Figure 1: To Exercise 5.

Exercise 3
Find the stationary shape of the surface of an incompressible fluid rotated around the vertical axis with a constant angular velocity Ω.
Exercise 4 (KdV equation)

Consider the continuous system which is defined by a Hamiltonian (given as a functional of the field $u(x)$)

$$H[u] = \int dx \frac{1}{6} \left[u^3 + 3u_x^2 \right]$$

and by Poisson bracket

$$\{u(x), u(y)\} = \partial_x \delta(x - y).$$

a) Derive the equation of motion for the field $u(x,t)$.

b) Assume that the system has periodic boundary conditions. Writing $u(x) = \sum_p u_p e^{ipx}$ find the Poisson bracket $\{u_p, u_q\}$. Suggest the canonically conjugated coordinates and momenta for the dynamical system.