2/19/2004. Due: Thursday, March 4, 2004 (in class).

Physics 682: Quantum Magnetism

Problems with stars are not for credit and will NOT be graded.

Homework 2

Exercise 1: High temperature susceptibility

Consider the classical Hamiltonian:

H =13 Ji;SiS;+ D> (S7), (1)
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where 7, j are sites of three-dimensional stacked triangular lattice (simple Bravais
lattice with lattice vectors e; = (1,0,0), ey = (1/2,4/3/2,0), e3 = (0,0,1). Non-
zero exchange integrals are given by Jiite, = J > 0, Jijte,, = Jiit(er—en) = J >0,
and D > 0 is an easy plane anisotropy constant. Consider the following ratios
between constants J : D : J' =500:5: 1.

a) In RPA approximation calculate the high temperature static susceptibility at
wave vector gq. Consider both cases: magnetic field is in (easy) plane and perpendi-
cular to the plane.

b) What is the wave vector () at which instability occurs when lowering the
temperature? What is the critical temperature at which this transition occurs?

*c) Do you think the actual critical temperature is close to the one obtained in
RPA? What is better estimate for critical temperature?

Hint. Remember that in purely one dimensional system ordering does not occur
at all.

d) Find the uniform susceptibility at high temperatures. What happens with
this susceptibility at the critical temperature found in b)?

Exercise 2: Classical ground state

For the spin Hamiltonian given in exercise 1 find the classical ground state (spin
configuration minimizing the Hamiltonian). Find the uniform susceptibility x| (ma-
gnetic field is applied parallel to z-axis) at zero temperature.

Hint. Use the value ) obtained in exercise 1.

*Exercise 3: In-plane magnetic field

Find x, (magnetic field is in plane) at zero temperature for the system from exercises
1,2. Find x, (magnetic field is in plane) at zero temperature and at finite magnetic
field J'S < h < JS.



*Exercise 4: Spin waves

For the same system find the spectrum of spin waves at very low temperatures (assu-
ming that spins are classical). How many branches of spin waves have you obtained?
How many Goldstone modes have you found? Find (or estimate) the thermal cor-
rections to the average spin on lattice site (calculate (5;) at very low temperature.
Which spin wave modes contribute the most to these thermal corrections?

Exercise 5: Mean field free energy from microscopics

Consider a three-dimensional classical easy-axis ferromagnet described by microsco-
pic Hamiltonian:
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where 51-2 = S2is a classical spin at site i of a simple cubic lattice, exchange constants
Jij = J are non zero for nearest neighbors only, and anisotropy is small J > D > 0.
a) Using Weiss molecular field approach (mean field) find the critical tempera-
ture of magnetic ordering phase transition and equations determining spontaneous
magnetization at T < T.
b) Show that this spontaneous magnetization can be obtained at T close to T,
by minimizing the following free energy
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m? + s—(m2 +m2) + bm*, (3)
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where m® = m2 +m2 4+ m?. Express X.., X1, b in terms of T, and D.

Exercise 6: Gradient terms

In RPA approximation calculate the gradient part of free energy for the same model
as in the previous exercise. Express the constant ¢ in front of gradient term of free
energy in terms of microscopic parameters J, D or T,.

Hint. Obtain high temperature susceptibility in RPA, write gradient part as
1

5Ma(—q) [)Z(q)];blmb(q), and expand y(q) at small q.

Exercise 7: Ising ferromagnet

If ferromagnet has a weak easy-axis anisotropy D < J one can use Ising model close
enough to the phase transition point. How close should temperature be to 7T, to use
Ising model instead of full anisotropic free energy?



*Exercise 8: Domain wall

Consider the same magnetic system as in exercise 5 at temperature very close but
slightly lower than 7.. One can consider domain wall — two-dimensional surface
separating half-spaces with opposite uniform magnetizations.

a) Minimizing mean field free energy obtained in exercises 5,6 find the “shape”
of a domain wall. Namely, find the configuration m,(z) where z is the axis per-
pendicular to domain wall and m, is a component of magnetization along the easy
axis. Boundary conditions defining domain wall are, obviously, m,(£o0) = Fmy,
where my is an equilibrium uniform magnetization. What is the typical width of
the domain wall? What is the free energy of domain wall per unit square?

b) What happens if temperature is further away from 7., namely, in the range
where all three components of magnetization play role. To understand it better,
find the shape of domain wall at zero temperature assuming that D < J. What is
the typical width of the domain wall? What is the energy of domain wall per unit
square?

Hint. Show that in the continuum approximation (2) becomes

H = / djf [Ja?(V5*)? - D(57)7], (4)

parameterize spin as S = S(sin6(z),0, cos0(z)) and minimize the energy with res-
pect to 0(z).

*Exercise 9: Spin vortex

Assume now that we have an easy-plane ferromagnet described by (2) but with
J > —D > 0. Then spins prefer to lie in the xy plane and there exist another
topological defect — spin vortex instead of domain wall. Estimate (very roughly, by
analogy with domain wall, no calculations) the size of the core of the vortex. How
do you define this core? What happens with magnetization (qualitatively) inside
the core? Consider two separate cases: temperature is in the close vicinity of the
critical temperature and temperature is zero.



