Physics 302/572: Electromagnetic Theory II

Read: Griffiths 11.1-11.2

"G, **PS**" refer to Griffiths and Pollack & Stump books respectively. Problems with stars are not for credit and will NOT be graded.

Homework 9

Exercise 1 (G 11.25 corrected)

When a charged particle approaches (or leaves) a conducting surface, radiation is emitted, associated with the changing electric dipole moment of the charge and its image. If the particle has mass m and charge q, find the total radiated power, as a function of its height z above the plane. [Answer: $(\mu_0 cq^2/4\pi)^3/12m^2z^4$]

Exercise 2

A beam of 2 keV electrons is stopped in a distance of 0.01 cm (1 eV = 1.6×10^{-19} J).

a) Calculate the total energy of the radiation emitted by each electron. (Assume constant decceleration.)

b) Find the ration of the emitted energy to the initial electron energy.

Exercise 3

A neutron star (pulsar) of mass M and radius R has a magnetic moment \vec{m} . It is rotating with angular velocity ω about an axis perpendicular to \vec{m} .

a) Find the electromagnetic power it radiates.

b) Find the energy radiated in one rotation, and compare this with the rotational kinetic energy of the star $(K = \frac{1}{5}MR^2\omega^2)$.

c) Find the fractional change $\Delta \omega / \omega$ in one year.

For numerical estimates use f = 100 Hz, $M = 3 \times 10^{30}$ kg, R = 10 km, and $m = 10^{27}$ A·m².

Exercise 4

Consider two perfect oscillating electric dipoles $\vec{p}_1(t) = p_0 \cos(\omega t)\hat{z}$ and $\vec{p}_2(t) = p_0 \cos(\omega t + \alpha)\hat{z}$, positioned at x = 0, y = 0 and $z = \pm a$ respectively.

a) Find the radiation electric field at the point (r, θ, ϕ) (spherical coordinates) assuming $r \gg \omega/c$, a.

b) Find the Poynting vector at the same point.

c) What is the direction of maximal radiation if $\alpha = \pi$ and a is very small?

*d) What is the total radiated power?