Formulas for Midterm Exam 1 (Physics 125) 1

One dimensional motion in x

$$x = x_0 + v_0 t + \frac{1}{2} a t^2$$

$$v = v_0 + a t$$

$$v^2 = v_0^2 + 2a(x - x_0)$$
(1)
(2)

$$v = v_0 + at (2)$$

$$v^2 = v_0^2 + 2a(x - x_0) (3)$$

Projectile Motion

X	у
$x = x_0 + v_{0x}t$	$y = y_0 + v_{0y}t - \frac{1}{2}gt^2$
$v_x = v_{0x}$	$v_y = v_{0y} - gt$
$v_x^2 = v_{0x}^2$	$v_y^2 = v_{0y}^2 - 2g(y - y_0)$

Relative velocity

$$\vec{v}_{P/B} = \vec{v}_{P/A} + \vec{v}_{A/B}$$
 (4)

Forces

$$\Sigma \vec{F} = m\vec{a} \tag{5}$$

$$\vec{w} = m\vec{g}, \tag{6}$$

$$f_s \leq \mu_s n, \tag{7}$$

$$f_k = \mu_k n. \tag{8}$$

$$f_k = \mu_k n. (8)$$

Circular Motion

$$a_{\rm rad} = \frac{v^2}{R} \tag{9}$$

2 Formulas for Midterm Exam 2 (Physics 125)

All formulas from Midterm 1 +

Work and Energy

$$W = \vec{F} \cdot \vec{s} = Fs \cos \theta = F_{\parallel} s, \tag{10}$$

$$K = \frac{1}{2}mv^2, (11)$$

$$U_{\text{gravity}} = mgy,$$
 (12)

$$U_{\text{spring}} = \frac{1}{2}kx^2. \tag{13}$$

Work-Energy Theorem (general)

$$K_1 + U_1 + W_{other} = K_2 + U_2. (14)$$

In the absence of nonconservative forces the mechanical energy is conserved!

$$K_1 + U_1 = K_2 + U_2. (15)$$

Momentum and Impulse

$$\vec{p} = m\vec{v}, \tag{16}$$

$$\vec{P}_{\text{tot}} = \sum_{i} m_i \vec{v}_i, \tag{17}$$

(18)

Second Newton's Law

$$\vec{F}_{\text{ext tot}} = \frac{d\vec{P}_{\text{tot}}}{dt}.$$
 (19)

In the absence of external forces the total momentum of the system is conserved!

$$\vec{P}_{\rm tot} = const. \tag{20}$$

Collisions

Momentum is conserved in any collisions $\vec{P}_1 = \vec{P}_2$ or

$$m_A \vec{v}_{A1} + m_B \vec{v}_{B1} = m_A \vec{v}_{A2} + m_B \vec{v}_{B2}. \tag{21}$$

In completely inelastic collisions particle stick together after collision $\vec{v}_{A2}=\vec{v}_{B2}=\vec{v}_2$ and

$$m_A \vec{v}_{A1} + m_B \vec{v}_{B1} = (m_A + m_B) \vec{v}_2. \tag{22}$$

In perfectly elastic collisions kinetic energy is conserved $K_1=K_2$ or

$$\frac{1}{2}m_A v_{A1}^2 + \frac{1}{2}m_B v_{B1}^2 = \frac{1}{2}m_A v_{A2}^2 + \frac{1}{2}m_B v_{B2}^2.$$
 (23)

In *perfectly elastic* collisions for *one-dimensional motion* one can replace conservation of kinetic energy (23) (with the use of (21)) by simpler formula

$$v_{B1x} - v_{A1x} = -(v_{B2x} - v_{A2x}). (24)$$

Rotation

Rotation - Translation Correspondence:

Translation	Rotation	
x or s	θ	$\theta = s/r$
$v = \frac{dx}{dt}$	$\omega = \frac{d\theta}{dt}$ $\alpha = \frac{d\omega}{dt}$	$\omega = v/r$
$a = \frac{dv}{dt}$	$\alpha = \frac{d\omega}{dt}$	$\alpha = a/r$
m	$\mid I \mid$	$I = \Sigma mr^2$
$K = \frac{1}{2}mv^2$	$K = \frac{1}{2}I\omega^2$	$K = \frac{1}{2} \Sigma m v^2$

Units of angle

$$2\pi \text{ rad} = 360^{\circ} = 1 \text{ rev.}$$
 (25)

Rotational motion with $\alpha = const$

$$\alpha = const,$$
 (26)

$$\omega = \omega_0 + \alpha t, \tag{27}$$

$$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2. \tag{28}$$

Moment of inertia

$$I = \sum_{i} m_i r_i^2. \tag{29}$$

Parallel Axis Theorem

$$I_P = I_{cm} + Md^2. (30)$$

Formulas for Final Exam (Physics 125) 3

All formulas from Midterms 1 and 2 \pm

Dynamics of rotational motion

Rotation - Translation Correspondence:

Translation	Rotation	
m	I	$I = \Sigma mr^2$
$K = \frac{1}{2}mv^2$	$K = \frac{1}{2}I\omega^2$	$K = \frac{1}{2} \Sigma m v^2$
F	$\mid \tau \mid$	$\vec{\tau} = \vec{r} \times \vec{F}, \tau = r_{\perp}F = rF_{\perp}$
p	$\mid L$	$ec{L}=ec{r} imesec{p},L=I\omega$

$$\sum \tau = I\alpha \tag{31}$$

$$K_{\text{rotation}} = \frac{1}{2}I\omega^{2}$$

$$K = \frac{1}{2}Mv_{cm}^{2} + \frac{1}{2}I_{cm}\omega^{2}$$

$$W_{\text{rotation}} = \tau\Delta\theta$$
(32)
(33)

$$K = \frac{1}{2}Mv_{cm}^2 + \frac{1}{2}I_{cm}\omega^2 \tag{33}$$

$$W_{\text{rotation}} = \tau \Delta \theta$$
 (34)

$$\sum \vec{\tau} = \frac{d\vec{L}}{dt},$$

$$\sum \tau_z = \frac{dL_z}{dt} = I\alpha_z.$$
(35)

$$\sum \tau_z = \frac{dL_z}{dt} = I\alpha_z. \tag{36}$$

Equilibrium

$$\sum F_x = 0, \quad \sum F_y = 0, \quad \sum F_z = 0 \quad \text{(1st condition)}$$

$$\sum \vec{\tau} = 0, \quad \text{about any point} \quad \text{(2nd condition)}$$
(38)

$$\sum \vec{\tau} = 0$$
, about any point (2nd condition) (38)

$$\vec{r}_{cm} = \frac{\sum_{i} m_i \vec{r}_i}{\sum_{i} m_i} \tag{39}$$

Elasticity

Elastic modulus =
$$\frac{\text{Stress}}{\text{Strain}}$$
. (40)

$$Y = \frac{\text{Tensile stress}}{\text{Tensile strain}} = \frac{F_{\perp}/A}{\Delta l/l_0} \quad \text{(Young's modulus)}. \tag{41}$$

Newtonian Gravity

$$F_g = \frac{Gm_1m_2}{r^2}, (42)$$

$$F_g = \frac{Gm_1m_2}{r^2},$$
 (42)
 $G = 6.67 \times 10^{-11} \frac{N \times m^2}{kg^2}.$

$$g = \frac{Gm_{\rm E}}{R_{\rm E}^2} = 9.8 \frac{m}{s^2}. (44)$$

$$U = -\frac{Gm_1m_2}{r}. (45)$$