
PHYSICS 125
ERROR AND UNCERTAINTY

In Physics, like every other experimental science, one cannot make any
measurement without having some degree of uncertainty. In reporting the results of an
experiment, it is as essential to give the uncertainty, as it is to give the best-measured
value. Thus it is necessary to learn the techniques for estimating this uncertainty.
Although there are powerful formal tools for this, simple methods will suffice for us. To
large extent, we emphasize a "common sense" approach based on asking ourselves just
how much any measured quantity in our experiments could be in error.

A frequent misconception is that the experimental error is the difference between
our measurement and the accepted "official" value. What we mean by error is the
estimate of the range of values within which the true value of a quantity is likely to lie.
This range is determined from what we know about our lab instruments and methods. It is
conventional to choose the error range as that which would comprise 68% of the results if
we were to repeat the measurement a very large number of times. In fact, we seldom
make the many repeated measurements, so the error is usually an estimate of this range.
But note that the error range is established so as to include most of the likely outcomes,
but not all. You might think of the process as a wager: pick the range so that if you bet on
the outcome being within your error range, you will be right about 2/3 of the time. If you
underestimate the error, you will lose money in your betting; if you overestimate it, no
one will take your bet!

Error:  If we denote a quantity that is determined in an experiment as X, we can
call the error ΔX. Thus if X represents the length of a book measured with a meter stick
we might say the length l = 25.1 ± 0.1 cm, where the central value for the length is 25.1
cm and the error, Δl is 0.1 cm. Both central value and error of measurements must be
quoted in your lab writeups. Note that in this example, the central value is given with
just three significant figures. Do not write significant figures beyond the first digit of
the error on the quantity. Giving more precision to a value than this is misleading and
irrelevant.

An error such as that quoted above for the book length is called the absolute error;
it has the same units as the quantity itself (cm in the example) .We will also encounter
relative error, defined as the ratio of the error to the central value of the quantity. Thus
the relative error on the book length is Δl/l = (0.1/25.1) = 0.004. The relative error is
dimensionless, and should be quoted with as many significant figures as are known for
the absolute error.



Random Error: Random error occurs because of smal1 random variations in the
measurement process. Measuring the time of a pendulum's period with a stopwatch will
give different results in repeated trials due to small differences in your reaction time in
hitting the stop button as the pendulum reaches the end point of its swing. If this error is
random, the average period over the individual measurements would get closer to the
correct value as the number of trials is increased. The correct reported result would be the
average for our central value and the error (usually taken as the standard deviation of the
measurements). In practice, we seldom take the trouble to make a very large number of
measurements of a quantity in this lab; a simple approximation is to take a few (3- 5)
measurements and to estimate the range required to encompass about 2/3 of the results.
We would then quote one half of this total range for the error, since the error is given for
'plus' or 'minus' variations. In the case that we only have one measurement, even this
simple procedure won't work; in this cue you must guess the likely variation from the
character of your measuring equipment. For example in the book length measurement
with a meter stick marked off in millimeters, you might guess that the error would be
about the size of the smallest division on the meter stick (0.1 cm).

Systematic Error: Some sources of uncertainty are not random. For example, if the
meter stick that you used to measure the book was warped or stretched, you would never
get a good value with that instrument. More subtly, the length of your meter stick might
vary with temperature and thus be good at the temperature for which it was calibrated,
but not others. When using electronic instruments such 1.5 voltmeters and ammeters, you
obviously rely on the proper calibration of these devices. But if the student before you
dropped the meter, there could well be a. systematic error. Estimating possible errors due
to such systematic effects really depends on your understanding of your apparatus and the
skill you have developed for thinking about possible problems. For example if you
suspect a meter might be mis-calibrated, you could compare your instrument with a
'standard' meter -but of course you have to think of this possibility yourself and take the
trouble to do the comparison. In this course, you should at least consider such systematic
effects, but for the most part you will simply make the assumption that the systematic
errors are small. However, if you get a va.1ue for some quantity that seems rather far off
what you expect, you should think about such possible sources more carefully.



Propagation or Errors: Often in the lab, you need to combine two or more
measured quantities, each of which has an error, to get a derived quantity. For example,
if you wanted to know the perimeter of a rectangular field and measured the length l and
width w with a tape measure, you would have then to calculate the perimeter,
p = 2 x (l + w), and would need to get the error on p from the errors you estimated on l
and w, Δl and Δw. Similarly, if you wanted to calculate the area of the field, A = lw,
you would need to know how to do this using Δl and Δw.

There are simple rules for calculating errors of such combined, or derived,
quantities. Suppose that you have made primary measurements of quantities A and B, and
want to get the best value and error for some derived quantity S. For addition or
subtraction of measured quantities:

If S = A + B, then ΔS = ΔA + ΔB.

If S = A- B, then ΔS = ΔA + ΔB (also).

(Actually, these rules are simplifications, since it is possible for random errors (equally
likely to be positive or negative) to partly cancel each other in the error ΔS. A more
refined rule that requires a little more calculation for either S = A ± B is:

This square root or the sum of squares is called 'addition in quadrature'.)

For multiplication or division of measured quantities:
If S = A x B or S = A/B, then the simple rule is ΔS/S = (ΔA/A) + (ΔB/B).
Note that for multiplication or division, it is the relative errors in A and B which

are added to that errors in A and B may partly compensate:

For the case that S = A2 (or An), the error is ΔS/ S = 2(ΔA/A) (or ΔS/S= n(ΔA/A)).

As an example, suppose you measure quantities A, B and C and estimate their errors
ΔA, ΔB and ΔC and calculate a quantity S = C + πA2/B. You should be able to derive
from the above rules that:

ΔS = (πA2/B)[2(ΔA/A) + (ΔB/B)] + ΔC
(Hint: 'π' is a known constant with no error, and it may be helpful to decompose S as S =
P + C, with P = πA2/B.) As before, the more refined calculation replaces the additions in
this formula with addition in quadrature.



Obtaining values from graphs: Often you will be asked to graph results obtained in the
lab and to find certain quantities from the slope of the graph. An example would occur
for a measurement of the distance l traveled by an air glider on a track in time t; from the
primary measurement of l and t, you might plot 2l (as y coordinate) vs. t2 (as x
coordinate). In constructing the graph, plot a point at the central x-y value for each of
your measurements, Small horizontal bars should be drawn whose length is the absolute
error in x (here t2), and vertical bars with length equal to the error in y (here 2l). The full
lengths of the bars are twice the errors since the measurement may be off in a positive or
negative direction. The slope of the graph will be the glider acceleration (remember,
l=(1/2)at2). You can determine this slope by drawing the straight line which passes as
close to possible to the center of your points; such a line is not however expected to pass
through all the points the best you can expect is that it passes through the error bars of
most (about 2/3) of the points, In getting the numerical value of the slope of your line,
you must of course take account of the scale (and units) of your x- and y-axes.

You can get the error on the slope (acceleration) from the graph as well. Besides the
line you drew to best represent your points, draw straight lines which pass near the upper
or lower ends of most of your error bars (again, on average), These maximum and
minimum slopes will bracket your best slope. Take the difference between maximum
and minimum slopes as twice the error on your slope (acceleration) value.


