Exercises to lecture 4

Exercise 1: WZW in 0 + 1, preliminaries

Consider a three-dimensional unit vector field $\vec{n}(x,y)$ ($\vec{n} \in S^2$) defined on a two-dimensional disk D. Define

$$W_{0} = \int_{D} d^{2}x \, \frac{1}{8\pi} \epsilon^{\mu\nu} \vec{n} [\partial_{\mu} \vec{n} \times \partial_{\nu} \vec{n}] = \int_{D} \frac{1}{16\pi i} \mathrm{tr} \, [\hat{n} d\hat{n} d\hat{n}], \tag{1}$$

where the latter expression is written in terms of differential forms and $\hat{n} = \vec{n} \cdot \vec{\sigma}$.

a) Calculate the variation of W_0 with respect to \vec{n} . Show that the integral becomes the integral over disk D of the complete divergence (of the exact form).

b) Parametrize the boundary ∂D of the disk by parameter t, apply Gauss-Stokes theorem and express the result of the variation using only the values of $\vec{n}(t)$ at the boundary.

We showed that the variation of W depends only on the boundary values of \vec{n} -field.

Exercise 2: WZW in 0 + 1, definition

Assume that we are given the time evolution of $\vec{n}(t)$ field $(\vec{n} \in S^2)$. We also assume that time can be compactified, i.e. $\vec{n}(t = \beta) = \vec{n}(t = 0)$. Consider the two-dimensional disk D which boundary ∂D is parametrized by time $t \in [0, \beta]$. The WZW term is defined by

$$S_{WZW} = i4\pi S W_0[\vec{n}],\tag{2}$$

where S is some constant, W_0 is given by Eq. (1), and $\vec{n}(x, y)$ is some arbitrary smooth extension of $\vec{n}(t)$ from the boundary to an interior of the disk.

Let us show that the WZW term is well defined and (almost) does not depend on the extension of $\vec{n}(t)$ to the interior of D.

Consider two different extensions $\vec{n}^{(1)}(x, y)$ and $\vec{n}^{(2)}(x, y)$ of the same $\vec{n}(t)$ and corresponding values $W_0^{(1)}$ and $W_0^{(2)}$ of the functional W_0 . Show that the difference $W_0^{(1)} - W^{(2)}$ is an integer number - the degree Q of mapping $S^2 \to S^2$. The second S^2 here is a target space of \vec{n} . How did the first S^2 appear?

We see that $S_{WZW}[\vec{n}(t)]$ is a multi-valued functional which depends on the extension of \vec{n} to the disk D. However, the weight in partition function is given by $e^{-S_{WZW}}$ and can be made singlevalued functional if the coupling constant S is "quantized". Namely, if $2S \in \mathbb{Z}$ (S - half-integer number) the $e^{-S_{WZW}}$ is a well-defined single-valued functional.

Exercise 3: WZW in 0 + 1, spin precession

Let us consider the quantum-mechanical action of the unit vector $\vec{n}(t)$ with the (Euclidian) action

$$S_h = S_{WZW}[\vec{n}(t)] - S \int dt \, \vec{h} \cdot \vec{n}(t), \qquad (3)$$

where W is given by (1) and \vec{h} is some constant three-component vector (magnetic field).

Find the classical equation of motion for $\vec{n}(t)$ from the variational principle $\delta S_h = 0$. Remember that one has a constraint $\vec{n}^2 = 1$ which can be taken into account using, e.g., Lagrange multiplier trick.

The obtained expression is the equation of spin precession and S_{WZW} is a proper, explicitly SU(2) invariant action for the free spin S.

Exercise 4: WZW in 0 + 1, quantization

Show that the classical equations of motion obtained from S_h correspond to Heisenberg equations (in real time) $\partial_t \hat{\vec{S}} = i \left[H, \hat{\vec{S}} \right]$ for the quantum spin operator $\hat{\vec{S}}$

$$\left[S^a, S^b\right] = i\epsilon^{abc}S^c \tag{4}$$

obtained from the Hamiltonian of a spin in magnetic field

$$H = -\vec{h} \cdot \vec{S}.\tag{5}$$

Obtain the commutation relations of quantum spin (4) from the topological part S_{WZW} . Notice that this topological action is linear in time derivative and, therefore, does not contribute to the Hamiltonian. Nevertheless, it defines commutation relations between components of the spin operator.

Hint: You can either use local coordinate representation of the unit vector in terms of spherical angles $\vec{n} = (\cos \phi \sin \theta, \sin \phi \sin \theta, \cos \theta)$ or use the general formalism of obtaining Poisson bracket from the symplectic form given in S_{WZW} .

Exercise 5: Reduction of WZW to the theta-term in 0+1

Let us assume that the field $\vec{n}(t)$ is constrained so that it takes values on a circle given in spherical coordinates by $\theta = \theta_0 = const$. Find the value of the topological term S_{WZW} on such configurations (notice that this constraint is not applicable in the interior of the disk D, only at its physical boundary). Show that the obtained topological term is a theta-term in 0 + 1 corresponding to $S^1 \to S^1$.

What is the value of the coefficient in front of that topological term? What is the value of corresponding "magnetic flux" through a ring? For S = 1/2 which reduction (value of θ_0) corresponds to the half of the flux quantum?

Exercise 6: WZW in 0 + 1, derivation from fermions

Consider an Euclidian action of a fermion coupled to a unit vector

$$S_E = \int d\tau \,\psi^{\dagger} D\psi, \tag{6}$$

where

$$D = \partial_{\tau} - m\vec{n} \cdot \vec{\tau} \tag{7}$$

with $\vec{n} \in S^2$ and $\vec{\tau}$ the vector of Pauli matrices. We obtain an effective action for \vec{n} induced by fermions as

$$e^{-S_{eff}} = \int D\psi D\psi^{\dagger} e^{-S_E} = \operatorname{Det} D$$
(8)

or

$$S_{eff} = -\log \operatorname{Det} D = -\operatorname{Tr} \log D.$$
(9)

We calculate the variation of S_{eff} with respect to \vec{n} as

$$\delta S_{eff} = -\mathrm{Tr}\,\delta D D^{-1} = -\mathrm{Tr}\,\delta D D^{\dagger} (D D^{\dagger})^{-1},\tag{10}$$

where $D^{\dagger} = -\partial_{\tau} - -m\vec{n}\cdot\vec{\tau}$. We have

$$DD^{\dagger} = -\partial_{\tau}^{2} + m^{2} - m\dot{\vec{n}} \cdot \vec{\tau} = G_{0}^{-1} - m\dot{\vec{n}} \cdot \vec{\tau}.$$
 (11)

Expand (10) in 1/m up to the term m^0 and calculate functional traces. Show that the term of the order m^0 is a variation of the WZW term in 0+1 dimensions. Restore S_{eff} from its variation. What is the coefficient in front of the WZW term? To what value of spin does it correspond?

Exercise 7: Haldane's theta-term from WZW in 0+1

Following Haldane, we consider the chain of quantum spins described by the action

$$S_{chain} = \sum_{j} i4\pi S W_0[\vec{n}_j(t)], \qquad (12)$$

where the sum is taken over the sites of a 1d spin chain labeled by j. Let us assume that as a result of the dynamics we have an antiferromagnetic chain and that the field $(-1)^j \vec{n}_j$ is a smooth one and can be approximated by the smooth field $\vec{n}(x,t)$, where x = ja and a is a lattice constant. Show that (12) reduces to the theta term in 2 + 0 dimensions corresponding to the mapping $S^2 \to S^2$. What is the value of the coefficient θ in front of that term?