
5/7/09, PHY 680-04, Topological terms.

Homework 6 (not for credit)

Exercise 1: WZW in 0 + 1, derivation from fermions

Consider an Euclidian action of a fermion coupled to a unit vector

SE =
∫
dτ ψ†Dψ, (1)

where
D = ∂τ −m~n · ~τ (2)

with ~n ∈ S2 and ~τ the vector of Pauli matrices. We obtain an effective action for ~n induced by
fermions as

e−Seff =
∫
DψDψ†e−SE = DetD (3)

or
Seff = − log DetD = −Tr logD. (4)

We calculate the variation of Seff with respect to ~n as

δSeff = −Tr δDD−1 = −Tr δDD†(DD†)−1, (5)

where D† = −∂τ −m~n · ~τ . We have

DD† = −∂2
τ +m2 −m~̇n · ~τ = G−1

0 −m~̇n · ~τ . (6)

Expand (5) in 1/m up to the term m0 and calculate functional traces. Show that the term of
the order m0 is a variation of the WZW term in 0+1 dimensions. Restore Seff from its variation.
What is the coefficient in front of the WZW term? To what value of spin does it correspond?

Exercise 2: Fractional charge on solitons (topological current)

Consider the following 1+1 dimensional action

S =
∫
d2x ψ̄

(
i6∂ + 6A+meiφγ

5
)
ψ. (7)

Here m is some constant and φ(x, t) is a field. Integrate out fermions (assuming that m is large)
and obtain the expression for the fermionic current induced by the non-uniform field φ(x, t). What
is the charge induced by the static configuration φ(x) with asymptotics φ(x→ ±∞) = φ±?

Exercise 3: Fractional charge on solitons (Peierls transition)

The following continuum model is obtained for a system exhibiting Peierls period doubling transi-
tion in 1d molecules.

S =
∫
d2x ψ̄

(
i6∂ + 6A+ ∆(x)

)
ψ + S[∆]. (8)

Here ∆(x) is the order parameter. The lowest energy of the system is achieved when the or-
der parameter is uniform ∆(x) = ±∆0. The configuration of the order parameter such that
∆(x→ ±∞) = ±∆0 is a topological soliton (corresponding to π0(Z2) = Z2) a.k.a kink or domain
wall. Find the charge induced by this configuration. Prove that the spectrum of the fermionic
Hamiltonian corresponding to the action (8) has a zero mode.
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Exercise 4: WZW term from the fermionic determinant in two dimensions

Let us consider two-dimensional fermions coupled to NLSM given in terms of the four component
unit vector (π0, ~π) ∈ S3 (i.e., π2

0 + π2
1 + π2

2 + π2
3 = 1). The Euclidian Lagrangian is given by

L2 = ψ̄
[
iγµ(∂µ − iAµ) + im(π0 + iγ5~π · ~τ)

]
ψ, (9)

where µ = 1, 2 is a spacetime index, ~τ is a vector of Pauli matrices, and Aµ is an external gauge
field probing fermionic currents.

We assume that the bosonic field π changes slowly on the scale of the “mass” m. Then one can
integrate out fermionic degrees of freedom and obtain an induced effective action for the π-field as
a functional determinant.

Seff = − log DetD, (10)
D = iγµ(∂µ − iAµ) + im(π0 + iγ5~π · ~τ). (11)

We calculate the effective action using the gradient expansion method. Namely, we calculate
the variation of (10) with respect to the π-field and use

δSeff = −δ log DetD = −Tr δ logD = −Tr δDD−1 = −Tr δDD†(DD†)−1. (12)

a) Calculate DD† for (11). Observe that this object depends only on gradients of π-field.
b) Expand (DD†)−1 in those gradients. This will be the expansion in 1/m. (It is convenient

to introduce notation G−1
0 = −∂2

µ +m2).
c) Calculate functional traces of the terms up to the order of m0. Use the plane wave basis to

calculate the trace Tr (X̂)→
∫
d2x

∫
d2p

(2π)2 e
−i~p·~xX̂ei~p·~x.

d) Identify the variation of the topological term in the obtained expression. It contains the
antisymmetric tensor εµν and is proportional to sgn (m).

e) Remove the variation from the obtained expression and find Seff up to them0 order. Remem-
ber that the removal of the variation for topological term requires Wess-Zumino trick (introduce
an auxiliary ball D3 with the spacetime being the boundary of the ball, extend fields to the ball,
etc...).

Exercise 5: Parity anomaly

Consider massive 2+1 dimensional Dirac fermions coupled to the gauge field

S =
∫
d3x ψ̄(i6∂ + 6A+m)ψ. (13)

Integrate out fermions and obtain the effective action Seff [A] induced by these fermions in the limit
of small field gradients (compared to m). Truncate the calculation at the order 1/m. What is the
topological part of the effective action? This calculation is related to so-called “parity anomaly”
[3].

Exercise 6: Aharonov-Casher theorem

Consider the 2-dimensional massless Dirac Hamiltonian in external magnetic field

H = αµ(i∂µ +Aµ), (14)

where µ = x, y and α-matrices can be taken as Pauli matrices αµ = σµ. Assume that the total
flux of magnetic field (magnetic field is non-uniform) through the plane is Φ =

∫
d2xεµν∂µAν .

Show that (14) has [Φ/Φ0] − 1 normalized zero modes (solutions of Hψ = 0). This example of
Atiyah-Singer index theorem is known as Aharonov-Casher theorem [4].
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Exercise 7: Theta term by reduction from WZW term

Consider the two-dimensional WZW term defined as an integral over three-dimensional ball D3

SWZW = ik
1

12π

∫
D3
d3x εµνλ tr

[
(g−1∂µg)(g−1∂νg)(g−1∂λg)

]
, (15)

where g ∈ SU(2) is a matrix-valued field. This field is defined on the two-dimensional spacetime
S2 = ∂D3 and smoothly extended to the interior of the ball from the boundary (actual spacetime).

a) Show that (15) is well defined if the coupling constant k is integer. Namely, its value does
not depend on the way the field g is extended from S2 to D3.

b) Let us make a reduction and substitute in (15) g = cosα + i sinα~n · ~σ with α = const and
~n ∈ S2 a unit vector. Show by explicit calculation that (15) reduces to the theta-term made out
of ~n and given by the integral over spacetime S2. Find the corresponding value of θ coupling in
terms of α and k.

Exercise 8: Linear response for QHE

The linear response for QHE state can be summarized in the form of Chern-Simons action

SCS =
∫
d2x dt

σxy
4π

εµνλaµ∂νaλ, (16)

where aµ is the deviation of an e/m potential from its background value corresponding to the
uniform magnetic field. The linear response is obtained by taking variations of this effective action
ja = δSCS/δAa and δρ = δSCS/δA0.

a) Show that the coefficient σxy in (16) has a meaning of a Hall conductance and that the
longitudinal conductance given by (16) is zero.

b) Using (16) relate δρ with external magnetic field (i.e., obtain the Streda formula). Increasing
magnetic field increases the number of filled states - phenomenon known as a spectral flow.

c) Show that if QHE sample is not infinite but has a boundary, the action (16) is not gauge
invariant. The latter means that it should be complimented by some boundary action - the action
of edge states.

Exercise 9: Edge states for IQHE
From the comprehensive exam, Stony Brook, Winter, 2008

This problem is a toy problem illustrating some physics of an Integer Quantum Hall Effect (IQHE).
Consider the electron gas confined to the two dimensional xy plane. Let us neglect the inter-

action between electrons. The Hamiltonian of a single particle is given by

H = − 1
2m

(
−ih̄~∇+

e

c
~A
)2

+ V (x, y),

where ~A is a vector potential of magnetic field and V (x, y) is an additional electrostatic (confining)
potential. For simplicity we will take the confining potential to be a one-dimensional harmonic
potential V = 1

2mω
2
0y

2.

a. For the constant magnetic field B using the Landau gauge Ax = −By, Ay = 0 and a
separation of variables ψ(x, y) = ψk(y)eikx write down the stationary Schroedinger equation
for ψk(y).
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b. Identify the obtained equation as the one for harmonic oscillator and find the energy levels
Ek,n with n = 0, 1, 2, . . .. The levels at given n are said to belong to the same Landau level.

c. Let us assume that the chemical potential µ is such that Landau levels with n > 0 are empty
(i.e., Ek,n > µ for n > 0). Then the only occupied states are the ones with n = 0. What are
the maximal and minimal values of k of occupied levels?

d. What are positions (in y direction) of those occupied levels?

e. The states with maximal and minimal k are called the edge states of IQHE. Find the velocity
of corresponding boundary excitations.

Exercise 10: Hall conductance from edge states for IQHE

a) Consider a ballistic wire with M = 1 channel. This means that there is 1 right and 1 left moving
electronic modes with velocities ±vF respectively. Assume that the chemical potential at the right
(left) end of the wire is µL (µR) respectively. Show that in the absence of scattering (ballistic wire)
the current in the wire is given by

I =
e

h
(µR − µL)M, (17)

where M is the number of channels.
b) In QHE the current is carried by edge modes. Thinking of one side of the Hall bar as of

right moving states and of the other one as of left moving states find the Hall conductance of the
Hall bar. Show that it is given by

σxy =
e2

h
M. (18)

Hint: one should think of µR − µL as of eVH - the voltage across the sample.
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