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Topology and topological spaces

Topology is a major area of mathematics. In topology we study the prop-
erties of objects which are not sensitive to continuous deformations, i.e.,
deformations where it is not allowed to cut objects and glue them together.
These properties are called topological properties. In this chapter we give
an introduction to some of basic topological notions. We mostly try to
avoid rigorous definitions and replace them by geometrically intuitive ones.
There are many good textbooks on topology including the ones oriented to
physics audience. We refer the reader to these textbooks for proofs and
more thorough justifications of statements we make. Our main goal is to
equip the reader with basic tools necessary to work with topological defects
and textures and topological terms.

3.1 Examples of topological properties

Let us consider subsets of a Euclidian space Rn of some dimension n. The
topological properties are the properties not sensitive to continuous deforma-
tion of those subsets. The following is the list of some topological properties.

• Dimensionality

• Existence of boundary (open disk vs. closed disk)

• Orientability (e.g., Möbius band vs. sphere)

• Connectedness (consisting of several “connected components”)

• Connectivity (simply connected vs multiply connected)

• Compactedness (2d sphere vs. 2d plane)

• . . .
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3.2 Topology and topological spaces
Definition: Let X be a set. A family F of subsets of X is a topology for X
if F has the following three properties:

(i) Both X and the empty set ∅ belong to F ,
(ii) Any union of sets in F belongs to F ,
(iii) Any finite intersection of sets in F belongs to F .

A topological space is a pair (X,F), where X is a set and F is a topology
for X.

The sets in F are called open sets.

Example 1: inseparable 2-point set Consider a set consisting of just
two elements (points) X = {x, y}. We endow this set with topology F ={
∅, {x, y}, {x}

}
. One can easily check that this is correctly defined topology.

This example is somewhat pathological example of inseparable topological
space (lacking Hausdorff property).

Example 2: metric-induced topology If X is a metric space, then the
open (in terms of metric) subsets of X form a topology for X which is called
metric topology for X.

Here open subset of metric space is the subset containing the vicinity of
its every point.

Metric spaces are the spaces which are used the most in physics. There
are exceptions though. For example the phase space of classical mechanics
does not have a natural metric. In the following we restrict ourselves to
topological spaces which are

(i) metric spaces (with metric topology)
(ii) n-dimensional manifolds. Roughly, one can think of n-dimensional

manifold as of s set which reminds Rn locally with some way to
interpolate between points.

(iii) spaces that can be embedded into Rm (for some m ≥ n) with induced
metric and topology.

3.3 Continuity and homeomorphism
The notion of continuity is the fundamental notion in topology and can be
defined for a mapping between topological spaces.

Definition: The mapping f : X → Y between two topological spaces is
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continuous if for every open (in topology on Y ) set U ⊂ Y the inverse image
f−1(U) ⊂ X is open in topology on X.

If both the mapping f : X → Y and its inverse f : Y → X are continuous,
the mapping is called homeomorphism. More precisely we have:

Definition: The bijection (one-to-one and onto mapping) f : X → Y
between two topological spaces is called homeomorphism if it is true that
f−1(U) is open in X iff U is open in Y .

Definition: Two topological spaces X and Y are called homeomorphic if
there exists a homeomorphism between X and Y . We denote homeomorphic
spaces as X ∼ Y .

Example: An open interval X = (−π/2, π/2) is homeomorphic to a line
Y = R1. As a homeomorphism one can take y = tan(x).

Example: n-dimensional sphere Sn with punched point is homeomorphic
to n-dimensional Euclidian space Rn. As a homeomorphism one can take a
stereographic projection of a sphere to Rn.

Definition: A property of a topological space is a topological property if it
is preserved under homeomorphism.

3.4 Examples of topological spaces

Here we give examples of topological spaces that we use and introduce cor-
responding notations. We also mention some ways to construct topological
spaces from the existent ones.

3.4.1 Euclidean spaces, spheres, and balls (Rn, Cn, Sn, Dn)

The sets of points

Rn = {{x1, . . . , xn}, xi ∈ R} , (3.1)
Cn = {{z1, . . . , zn}, xi ∈ C} (3.2)

are called real Euclidian space and complex space respectively. Here zi =
xi + iyi. These spaces are assumed to be endowed with conventional metric
d(r1, r2) = |r1 − r2| and with topology induced by this metric.

It is easy to see that Cn ∼ R2n with homeomorphism obtained by z →
x, y.



3.4 Examples of topological spaces 17

The sets of points

Sn =
{
{x1, . . . , xn+1}, x2

1 + . . . + x2
n+1 = 1

}
, (3.3)

Dn =
{
{x1, . . . , xn}, x2

1 + . . . + x2
n < 1

}
(3.4)

are called n-dimensional sphere and open n-dimensional ball respectively.
We defined them as embedded into Rn+1 and Rn respectively and assume
that they have the metric and topology induced by the embedding.

The boundary of the ball is sphere ∂Dn+1 ∼ Sn. The ball Dn is homeo-
morphic to Rn with homeomorphism given explicitly, e.g., by R = tan(πr/2).
Here r is the radial coordinate of a point in a ball and R is the one in Rn.

The sphere Sn is a compact topological space while Rn, Cn, Dn are non-
compact.†

3.4.2 Direct product of topological spaces (Tn = (S1)×n, etc)

Given two topological spaces X and Y one can form a topological space
X × Y which consists of pairs of points {x, y}. The topology on X × Y
is defined in a following way. We make a basis of open sets making direct
products of all pairs U × V of open sets from X and Y respectively. Then
we call open all sets obtained by arbitrary unions and finite intersections of
basis sets.

For example, one can think of Rn as of direct product R×R× . . .×R or
shortly Rn = (R1)×n.

The product of n one-dimensional spheres (circles) is called n-dimensional

torus Tn =

n︷ ︸︸ ︷
S1 × S1 × . . .× S1 = (S1)×n.

3.4.3 Real projective space RPn

Real projective space RPn is defined as a set of straight lines through the
origin in Rn+1 with metric topology. The metric defines the distance as an
angle between lines. If x ∈ Rn+1, i.e., x = (x0, x1, . . . , xn) one can write

RPn = {x, x ∼ λx}. (3.5)

Here λ is any real number λ ∈ R, λ )= 0 and the points x and λx should be
identified. The coordinates x0, . . . xn defined up to multiplication by λ )= 0
are called homogeneous coordinates of RPn.

† The topological space is called compact if from any covering of the space by open sets one can
choose finite covering. If the space is a subset of Euclidian space this topological definition is
equivalent to the conventional one from analysis. That is, the space is compact if it is closed
and bounded.
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One can think of RPn ∼ Sn/Z2, i.e., as of n-sphere with pairwise identi-
fication of points connected by any diameter of the sphere. Similarly RPn

can be thought of as Dn with boundary and with opposite points of the
boundary identified.

RP 1 ∼ S1 (prove).
RP 2 is a real projective plane. This is non-orientable surface which can

not be embedded into R3 without self-intersections. RP 2 is one of classic
surfaces widely used in geometry.

Its polygon representation.

3.4.4 Complex projective space CPn

If we replace R → C in the previous section we obtain the definition of a
complex projective space CPn. It is defined by its complex homogeneous
coordinates z = (z0, . . . , zn) with identification z ∼ wz with w ∈ C, w )= 0.

Let us take z = (z0, . . . , zn) restricted by |z0|2+ . . .+ |zn|2 = 1 (this means
that we have chosen |w| in a proper way). Obviously the set of such points
z forms (2n + 1)-sphere. Then CPn is obtained by identification z ∼ eiαz.
In other words CPn ∼ S2n+1/S1.

Let us consider a complex projective space CP 1 in more detail. It is
parameterized by a complex 2-component vector z = (z1, z2)t defined up to
multiplication by non-zero complex number. Or, similarly, by normalized
complex vector z so that z†z = 1 defined up to a multiplication by a phase
eiα. Let us consider a mapping of CP 1 onto S2 given by

$n = z†$σz (3.6)
= (z∗1z2 + z∗2z1,−iz∗1z2 + iz∗2z1, z

∗
1z1 + z∗2z2),

where $σ is a set of Pauli matrices.
It is easy to check that (3.6) is a well-defined mapping CP 1 → S2. Indeed,

check that $n2 = 1 and that $n does not change if z → eiαz. This mapping is
homeomorphism and its existence proves that CP 1 ∼ S2. It is often called
Hopf map or Hopf fibration. In physics the mapping (3.6) is sometimes
called CP 1 representation of $n-field.

3.4.5 Grassmann manifolds G(n, k) and CG(n, k)

Real Grassmann manifold G(n, k) is defined as set of k-dimensional sub-
spaces of n-dimensional space Rn going through the origin. It is obvious
that G(n, k) = G(n, n− k) and that G(n, 1) = RPn.
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Similarly we define complex Grassmann manifold CG(n, k) and similarly
CG(n, k) = CG(n, n− k) and CG(n, 1) = CPn.

3.4.6 Compact classic groups O(n), U(n), SO(n), SU(n), Sp(n)

Orthogonal groups The orthogonal group O(n) is defined as a set of real
n × n matrices subject to a condition OT O = 1. This definition embeds
the group into Rn2 and we use an induced topology in O(n). The condition
OT O = 1 is equivalent to (n2 + n)/2 real conditions (the matrix OT O is
symmetric). Therefore, the dimension of O(n) is dim(O(n)) = n2−n

2 .
One can think of O(n) as of the group of orthogonal transformations of

Rn.
For the orthogonal matrix M ∈ O(n) we have det(M) = ±1. The group

O(n) is not connected but consists of two connected components. These
components can be labeled by a sign of the determinant of corresponding
matrices. It is obvious that two matrices having different sign of the deter-
minant can not be connected within O(n).

The connected component of O(n) containing unit matrix forms a sub-
group called SO(n). It is specified by a condition det(M) = +1. It has the
same dimension dim(SO(n)) = n2−n

2 .
It is easy to check that SO(2) ∼ S1 and that SO(3) ∼ RP 3.

Unitary groups The unitary group U(n) is a group of unitary transfor-
mations of Cn. It can be parameterized by n× n complex matrices subject
to U †U = 1. The dimension of U(n) is dim(U(n)) = n2. It is connected.
The matrices of U(n) has determinants which are pure phases.

The subgroup of U(n) specified by a condition det(M) = 1 is called SU(n).
It has a dimension dim(SU(n)) = n2 − 1.

It is easy to check that SU(2) ∼ S3. SU(2) gives a two fold covering of
SO(3).

Symplectic groups The symplectic group Sp(n) is a group of unitary
transformation of n-dimensional quaternionic space. One can think of it as
of a set of 2n × 2n complex matrices M subject to conditions M †M = 1

and MT ΩM = Ω. Here Ω =
(

0 1n

−1n 0

)
is the 2n × 2n skew-symmetric

matrix. Matrices from Sp(n) have unit determinants.
The dimension of Sp(n) is dim(Sp(n)) = n(2n + 1). We have Sp(1) ∼

SU(2).
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3.4.7 Action of groups on spaces. Coset spaces.

Let us suppose that there exists an action of the group G on a space X, i.e.
there for every g ∈ G we have a mapping (homeomorphism) g : X → X.
Then, one can construct topological spaces identifying orbits of the action
as points.

The natural action of the group O(n) on Rn induces its actions on Sn−1,
G(n, k) etc. The latter actions are transitive. The latter means that for any
two points x, y ∈ X there is g ∈ G such that g : x → y. The spaces Sn−1,
G(n, k) are then homogeneous spaces (spaces with transitive group actions)
of the group O(n) (and similarly of SO(n)).

One can think, therefore, of many classical spaces as of coset spaces of
classical groups. Explicitly:

Sn−1 = O(n)/O(n− 1) = SO(n)/SO(n− 1), (3.7)
S2n−1 = U(n)/U(n− 1) = SU(n)/SU(n− 1), (3.8)
S4n−1 = Sp(n)/Sp(n− 1), (3.9)

G(n, k) = O(n)
/

O(k)×O(n− k), (3.10)

CG(n, k) = U(n)
/

U(k)× U(n− k). (3.11)

3.4.8 Classic surfaces

A surface is a two-dimensional manifold. Surfaces (up to a homeomorphism)
can be classified in the following way. First of all we distinguish sphere S2,
real projective plane RP 2 and Klein bottle K. Other classic surfaces can be
obtained from the above three by attaching handles and drilling holes (only
by attaching handles if we are interested in closed surfaces only).

Closed surface can be constructed from an oriented fundamental polygon
of the surface by pairwise identification of its edges. The simplest polygons
are shown in Figure 3.1. They can be represented by words (in obvious no-
tations), e.g, sphere ABB−1A−1 (or simply AA−1, projective plane ABAB
(or simply AA), Klein bottle ABAB−1, torus ABA−1B−1 etc.

Inserting the following word ABA−1B−1 into any polygon word means at-
taching an additional handle to the surface. Similarly, inserting AA attaches
RP 2 (through a pipe) to the original surface.

Any closed surface is homeomorphic to one of the following (i) sphere
(Euler characteristics 2), (ii) chain of g tori connected by pipes (Euler char-
acteristics 2−2g), (iii) chain of k projective planes connected by pipes (Euler
characteristics 2− k).



3.5 Topological invariants 21

S2 RP 2 K T 2

Fig. 3.1. Fundamental polygons (squares) for sphere, projective plane, Klein bottle,
and torus, respectively (from Wikipedia).

A closed surface is determined, up to homeomorphism, by two pieces of
information: its Euler characteristic, and whether it is orientable or not.

3.4.9 Space of mappings

The space of continuous mappings of topological spaces X → Y is denoted
by C(X, Y ) and is a topological space itself (there is a canonic way to define
a topology on this space †).

The spaces of mappings play a very important role in topology and in
homotopy theory introduced in the next section.

If X consists of only one point then C(X, Y ) = Y . If X is a set of n
isolated points C(X, Y ) = Y × Y × . . .× Y (n times).

If I = [0, 1] is a closed interval, the continuous mapping f : I → X is
called a path in X with the beginning x0 = f(0) and the end x1 = f(1).
The space C(I, X) with additional restriction that x0 and x1 are fixed is a
space E(X;x0, x1) of paths in X with the beginning at x0 and the end at
x1. The space Ω(X;x0) = E(X;x0, x0) is the space of loops in X beginning
and ending at the same point x0.

3.5 Topological invariants

One of the main problems of topology is to classify topological spaces up
to homeomorphisms. In particular, given two topological spaces X and Y
one should be able to say whether they are homeomorphic or not. There
is no complete solution of this problem yet. However, if X and Y have

† The base of open sets in C(X, Y ) can be constructed in the following way. Take any compact
subset K of X and any open subset O of Y . Then the set of mappings f : X → Y such that
f(K) ⊂ O is called open. Taking arbitrary unions and finite intersections of such basis sets
one obtains the topology on C(X, Y ).
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different topological invariants we can be sure that X and Y are not homeo-
morphic to each other. Here topological invariants are the quantities which
are conserved under homeomorphisms.

As examples of topological invariants one can consider the number of
connected components, compactness, Euler characteristic etc.

An open interval is not homeomorphic to a closed one as the latter is
compact while the former is not. A torus is not homeomorphic to a sphere as
they have different Euler characteristic. Let us consider Euler characteristic
as an example.

Euler characteristic Here we confine ourself to the Euler characteristic of
two-dimensional surfaces. Suppose that a surface X is homeomorphic to a
polyhedron K (a geometrical object surrounded by faces). Then the Euler
characteristics χ(X) is defined as

χ(K) = V − E + F, (3.12)

where V,E, F are the numbers of vertices, edges, and faces in K respectively.
The remarkable fact that χ(X) does not depend on the choice of K but only
on X itself.

Given a two dimensional surface one performs triangulation of that sur-
face and calculates χ(X). If we consider fundamental polygons of sphere,
projective plane, Klein bottle, and torus we calculate the triplet (V,E, F ) to
be (3, 2, 1), (2, 2, 1), (1, 2, 1), and (1, 2, 1) respectively. This gives χ(S2) = 2,
χ(RP 2) = 1, χ(K) = 0, and χ(T 2) = 0.

One can see that χ(X) is not enough to distinguish between closed two-
dimensional surfaces. For example, the Klein bottle and the torus have the
same K. However, in case of surfaces two invariants: Euler charactistic and
orientability fully define the surface up to homeomorphism.

It would be nice to have a full set of topological invariants to distinguish
between any two non-homeomorphic topological spaces. This set is not
found yet. In the next section we consider a way to construct a very rich
set of topological invariants which are called homotopy groups.

3.6 Exercises

Exercise 3.1: Topology of configurational spaces What is the configu-
ration space of

a) Double spherical pendulum with suspension point which is allowed to move
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along straight line.

b) Quantum diatomic molecule made out of identical atoms (e.g, N2). Assume
that at the relevant energy scale one can neglect the change of the distance between
atoms.

c) Rigid body.

Exercise 3.2: Classic surfaces Show that

a) The projective plane RP 2 with a hole is homeomorphic to the Möbius band.

b) Two Klein bottles connected by a pipe are homeomorphic to the Klein bottle
with handle.

c) Two projective planes RP 2 connected by a pipe are homeomorphic to the
Klein bottle.

Exercise 3.3: Euler characteristic of sphere Calculate (V,E, F ) for tetra-
hedron, cube, and octahedron and obtain from them the Euler characteristic of S2.

Exercise 3.4: Euler characteristic Show that
a) Attaching handle to a surface decreases its Euler characteristic by 2.
b) Attaching RP 2 to a surface by pipe decreases its Euler characteristic by 1.

Exercise 3.5: Stereographic projection Stereographic projection maps a
sphere parameterized by a unit vector $n = (n1, n2, n3) ($n2 = 1) onto a plane
tangent to a sphere at south pole ($n = (0, 0,−1)). The points of the plane are
parameterized by Cartesian coordinates (x, y).

a) Find an explicit relation between x, y and $n.
b) The same but use polar coordinates ρ, φ instead of x, y.
c) The same but use complex coordinates w = x + iy.

Exercise 3.6: Topological invariant: S3 → S3 Consider a three-dimensional
unit vector field $π ∈ S3 on a three-dimensional space $π(x, y, z) with constant bound-
ary conditions $π(x, y, z)→ (0, 0, 0, 1) as (x, y, z)→∞. Show that

Q = A

∫
d2x εµνλεabcdπa∂µπb∂νπc∂λπd (3.13)

is an integer-valued topological invariant with properly chosen normalization con-
stant A. Namely,

a) Show that under small variation δ$π of a vector field the corresponding variation
δQ = 0.

b) Show that the integrand in (3.13) is a Jacobian of the change of variables from
x, y, z to a sphere $π up to normalization.

c) Choose A so that it is normalized in such a way that the area of the 3-sphere is
1. Therefore, Q is an integer degree of mapping of a space (with constant boundary
conditions) onto a 3-sphere.

Hint: In b) consider the vicinity of the northern pole of the 3-sphere only and
then extend your result to the whole 3-sphere by symmetry.


