
5

Topological defects and textures in ordered media

In this chapter we consider how to classify topological defects and textures
in ordered media. We give here only a very short account of the method
following Ref. [6], where the reader can found all necessary details.

5.1 Spontaneous symmetry breaking and order parameter space

Suppose that there is a quantum field theory (QFT) with symmetry group G.
It means here that the action (Hamiltonian, Lagrangian, etc.) is invariant
under symmetry transformations from G. If there is a field which acquires
an expectation value which is not invariant under the symmetry G we say
that the symmetry G is spontaneously broken. The field is called the order
parameter field. If the expectation value of the order parameter field (which
is referred to as order parameter) has a residual symmetry H (subgroup of
G) we call M = G/H the order parameter space (or manifold).

Every point of the order parameter space M represents a vacuum (or
thermodynamic state). The energies (or free energies) of the correspond-
ing vacua (or thermodynamic states) are the same because G is the exact
symmetry of QFT Hamiltonian.

In local QFT it is natural to expect that in the state with broken sym-
metry the states corresponding to slowly changing (in space) order param-
eter are the low energy states. Therefore, the small gradient configurations
m(x) : Rd → M parameterize low energy states of the field theory in d
spatial dimensions. One describes the low energy sector of QFT (or sta-
tistical mechanics) in the phase with broken symmetry by nonlinear sigma
models with actions (energies) depending on gradients of the order param-
eter

∫
ddx (∇m)2. We assume that the mappings m(x) are smooth almost

everywhere. The mappings Rd → M are referred to as nonuniform states,
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while the mappings which map the whole Rd to a single point m0 ∈ M are
uniform states with the value of the order parameter m0.

5.2 Topological defects and homotopy theory

It is useful to consider not only mappings m(x) which are smooth everywhere
but also the ones with singularities. If m(x) is smooth for all x ∈ Rd except
for isolated points (lines, surfaces), we say that m(x) is a configuration
with point (line, surface) defect. The configurations with defects typically
have higher energies than everywhere smooth configurations. Notice also,
that in the vicinity of the singularity the validity of nonlinear sigma model
description is questionable and typically the degrees of freedom other than
fluctuations of the order parameter become relevant near defects.

The relevance of a particular type of defect in the low energy description
of the theory is determined dynamically (e.g. studying the effect of topo-
logical defects on a particular correlation function in renormalization group
approach). There is however, a class of defects which if present can not
be removed by continuous deformation of fields because of the non-trivial
topology of the order parameter space. Such defects are called topological
defects.

As an example, consider a vortex in a superfluid film. The order parameter
in this case is a superfluid phase φ ∈ S1 and the vortex configuration is given,
e.g., by R2 → S1 with φ(x) = arg("x). Let us enclose the defect by a circle of
the large radius and notice that the configuration φ(x) induces a continuous
mapping S1 → S1 given by φ(θ) : |"x|eiθ → θ. This mapping has the
winding number one. The non-vanishing winding number means that there
is a non-removable (topological) defect inside the unit circle we introduced.
This defect can not be removed by local deformations of φ(x) inside the
circle. One can only move the defect outside of the circle. The possibility of
having topological point defects (vortices in a superfluid film) is, therefore,
following from the non-triviality of the fundamental group π1(S1) = Z. Here
π1 is taken because the surface surrounding the defect is one-dimensional
sphere (circle) and the argument of π1(S1) is the order parameter space for
a superfluid - S1. Moreover, the structure of the homotopy group (Z in
this case) tells us how composite defects can be constructed. For example,
merging two topological defects characterized by winding numbers W1 and
W2 one obtains the topological defects with winding number W1 + W2.

The above construction can be straightforwardly extended to a more gen-
eral case. We consider the order parameter space M in d-dimensional space.
One needs (d−2)-dimensional sphere Sd−2 to enclose the line defect in d di-
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mensions. Therefore, the possibility to have topological line defects requires
that πd−2(M) %= 0. We summarize this type of topological analysis as

πd−1(M) %= 0, point defects,
πd−2(M) %= 0, line defects, (5.1)
πd−3(M) %= 0, surface defects,

. . .

As one more example, let us consider the possibility of having domain
walls (surface defects) in three dimensions. It is quite obvious that the
surface defect is not removable only if the values of the order parameter
on both sides of the defect belong to different connected components of
the order parameter space. Therefore, we should check for non-triviality of
zeroth homotopy group π0(M) %= 0 which agrees with (5.1).

5.3 Topological textures

Let us now consider smooth order parameter configurations (no defects). As
an example we take the O(3) nonlinear sigma model in 2d. The energy is
given by

E =
1
2g

∫
d2x (∂µ"n)2, (5.2)

where "n ∈ S2 ("n2 = 1). The energy is finite if asymptotically

"n("x) −→ "n0, as |"x| →∞, (5.3)

where "n0 is a constant unit vector which does not depend on the direction
in which the limit is taken. One can see that the neighborhood of infinity
in R2 is mapped into the neighborhood of n0.

The configurations "n("x) with constant boundary condition (5.3) are spec-
ified by the mapping S2 → M , where S2 here is compactified space R2 and
M = S2 is the order parameter space. These mappings may be non-trivial
since π2(S2) = Z %= 0. One can have non-trivial smooth configurations of
"n("x) which can not be removed without breaking constant boundary condi-
tions, i.e., going through the infinite energy barrier. Such configurations are
called textures.

The topological test for textures in spacial dimension d, therefore, is the
non-triviality of the homotopy group

πd(M) %= 0, textures. (5.4)
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For space dimensions that occur most often in condensed matter applica-
tions we have the following table

d = 1 d = 2 d = 3 d = 4

π0 point line surface hypersurface

π1 texture point line surface

π2 texture point line

π3 texture point

π4 texture

5.4 Phase transitions driven by topology: BKT transition

In spite of their high energies topological defects might give a very important
contribution to the partition function and even change the phase of mat-
ter. The classic example of such topological defect driven phase transition
is the Berezinskii-Kosterlitz-Thouless (BKT) transition in two-dimensional
XY model. We refer the reader to Refs. [3, 4] for details on XY model.

The energy of the vortex defect in this model diverges logarithmically
with the size of the system E ∼ J log(L). and at low temperature vortices
exist only in the bound form with anti-vortices (molecular phase). At higher
temperature, though, the entropy of the vortex is also proportional to the
logarithm log(L) and at the temperature higher than critical Tc ∼ J the
free energy of the vortex becomes negative F ∼ J log(L)−T log(L) < 0 and
vortices proliferate (plasma or Debye phase).

As a result of the proliferation of point defects the behavior of correlation
functions changes from power law decay at low temperature phase to the
exponential decay at high temperatures.

5.5 Exercises

Exercise 1: Nematic
Nematic is a liquid crystal characterized by an order parameter which is the unit
three-component vector "n = (n1, n2, n3), "n2 = 1 with an additional condition
"n ∼ −"n. The latter means that two unit vectors which are opposite to each other
describe the same state.
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What types of topological defects and textures are allowed for three-dimensional
nematic? What about two-dimensional one?

Exercise 2: Crystal
One can view a crystalline state as continuous translational symmetry broken to
the subgroup of discrete translations. Then the order parameter space should be
identified (for three-dimensional crystal) with M = G/H = R3/(Z × Z × Z).

a) What (geometrically) is the order parameter space for this system?

b) What are the homotopy groups of this manifold π0,1,2,3(M) ?

c) What types of topological defects and textures are allowed in such a system?

Exercise 3: Superfluid 3He−A
The order parameter of superfluid 3He − A can be represented by two mutually
orthogonal unit vectors "∆1, "∆2. That is, at each point in three-dimensional space
one has a pair of vectors with properties "∆2

1 = "∆2
2 = 1 and "∆1 · "∆2 = 0.

a) What is the manifold of degenerate states for this system?

b) What are the homotopy groups of this manifold π0,1,2,3(M) ?

c) What types of topological defects and textures are allowed in such a system?

Exercise 4: Heisenberg model
What topological defects and textures one should expect in the ordered state of a
three-dimensional classical Heisenberg model? What changes if the order parameter
is a director instead of a vector? A “director” means a vector without an arrow,
i.e., one should identify "S ≡ −"S. The models with a director as an order parameter
are used to describe nematic liquid crystals.

Exercise 5: Continuum limit of XY model
Let us start with the XY model defined on a cubic d-dimensional lattice. The
allowed configurations are parameterized by a planar unit vector "ni = (cos θi, sin θi)
on each site i of the latttice. The energy is given by

E = −
∑

〈ij〉

J cos(θi − θj). (5.5)

We assume that the most important configurations are smooth on a lattice scale
and one can think of θi as of smooth function θ("x) defined in Rd - continuous
d-dimensional space. Show that the energy is given in this continuous limit by

E =
J

2

∫
ddx

ad
a2(∂µθ)2, (5.6)
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where a is the lattice constant. The combination ρ(0)
s = Ja2−d is referred to as bare

spin-wave stiffness (or bare superfluid density).
Compute the energy of the vortex in such a model. Remember that the divergent

integrals should be cut by lattice constant a and by the size of the system L at small
and large distances respectively.

Exercise 6: Correlation function 〈(θ(x)− θ(0))2〉
Calculate the correlation function 〈(θ(x)−θ(0))2〉 in the XY model in d dimensions
neglecting the topology of θ, i.e., neglect vortices and think about θ as of real
number without periodicity. Divergencies at small distances should be cut off by
the lattice constant a.

Exercise 7: Correlation function 〈"n(x)"n(0)〉
Using the result of the previous exercise calculate the correlation function 〈"n(x)"n(0)〉
in the XY model in d dimensions neglecting the topology of θ. Write 〈"n(x)"n(0)〉 =
〈cos(θ(x)− θ(0))〉 = Re 〈ei(θ(x)−θ(0))〉 and use the properties of Gaussian integrals.

Make the conclusion about the existence of a true long range order in XY model
in 2d and relate it to Mermin-Wagner theorem.

Exercise 8: Correlation function 〈"n(x)"n(0)〉
Let us now start with high temperatures. Assume that J/T , 1. Using high tem-
perature expansion show that correlation function 〈"n(x)"n(0)〉 decays exponentially.
Find the correlation length at high temperatures.

Exercise 9: Vortex unbinding
Make an estimate of the BKT phase transition temperature in 2d XY model. Use
the energy of the vortex calculated previously, the estimate of the entropy of the
vortex, and the condition F = 0 for the free energy of the vortex.
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