Physics 680-04
Special Topics in Condensed Matter Theory:
Topological terms in condensed matter physics
Spring 2009
Suggested presentation topics
(Under construction)
-
Media with Non-Abelian fundamental group. Biaxial nematics.
(Michael Assis)
N. D. Mermin, Rev. Mod.
Phys., 51, 591 (1979).
The topological theory of defects in ordered media,
(PDF,
subscription required )
-
Polyakov-t'Hooft monopole.
(Savvas Zafiropoulos)
R. Rajaraman, Solitons and Instantons,
North Holland (1987).
(Amazon)
-
BKT phase transition in XY model.
(Yan Xu)
P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics,
Cambridge University Press (2000).
(Amazon)
-
Particle on a ring and Josephson junction arrays.
(Nathan Borggren)
A. Altland, L. I. Glazman, and A. Kamenev, Phys. Rev. Lett., 92, 026801 (2004).
Electron transport in granular metals.,
(PDF,
subscription required )
-
Quantum Spin Hall Effect.
(Saul Lapidus)
M. Koenig, H. Buhmann, L. W. Molenkamp, T. L. Hughes, C.-X. Liu, X.-L. Qi, S.-C. Zhang,
arXiv:0801.0901v1 [cond-mat.mes-hall] (2008).
The Quantum Spin Hall Effect: Theory and Experiment,
(http://arxiv.org/abs/0801.0901 )
-
Topological orders.
X.-G. Wen, Adv. Phys., 44, 405-473 (1995).
Topological orders and edge excitations in fractional quantum Hall states,
(PDF,
subscription required )
-
Topological order in superconductors with dynamical gauge field.
T. H. Hansson, V. Oganesyan, and S. L. Sondhi, Annals of Physics, 313, 497-538 (2004).
Superconductors are topologically ordered,
(PDF,
subscription required )
-
Fermionic zero modes in vortex cores.
N. B. Kopnin and M. M. Salomaa, Phys. Rev. B 44, 9667-9677 (1991).
Mutual friction in superfluid He-3: Effects of bound states in the vortex core,
(PDF,
subscription required )
-
Compact QED in 2+1. Topological defects and mass of photon.
(Ozan Erdogan)
A. M. Polyakov, Phys. Lett. B 59, 82-84 (1975).
Compact gauge fields and infrared catastrophe.,
(doi:10.1016/0370-2693(75)90162-8 )
A.M. Polyakov, Nucl. Phys. B 120, 429-458 (1977).
Quark confinement and topology of gauge theories,
(doi:10.1016/0550-3213(77)90086-4 )
A.M. Polyakov,
Gauge Fields and Strings: Contemporary Concepts in Physics, Volume 3,
CRC (1987).
(Amazon )
-
Compact QED in 2+1 with fermions. Zero modes on topological defects.
(Marcos Crighigno)
I. Affleck, J. Harvey, and E. Witten, Nucl. Phys. B 206, 413-439 (1982).
Instantons and (super-) symmetry breaking in (2+1) dimensions.,
(doi:10.1016/0550-3213(82)90277-2 )
-
Topological defects in spinor BEC condensates with S=1.
(Manas Kulkarni)
T.-L. Ho, Phys. Rev. Lett., 81, 742-745 (1998).
Spinor Bose condensates in optical traps,
(doi:10.1103/PhysRevLett.81.742 )
T. Ohmi and K. Machida, J. Phys. Soc. Jpn., 67, 1822-1825 (1998).
Bose-Einstein condensation with internal degrees of freedom in alkali atom gases,
(doi:10.1143/JPSJ.67.1822 )
-
Boojums and other exotic defects in He3-A.
-
Topologically protected quantum computation.
-
Topological versus "spin-wave" transitions in
statistical mechanics.
XY and Ising models, classical
Hesenberg model in three dimensions.
(Rafael Lopes de Sa)
B. I. Halperin, in Physics of defects ,
Proceedings of the Les Houches
Summer Institute (North-Holland, Amsterdam 1980).
M-h. Lau, C. Dasgupta, Phys. Rev. B, 39,
7212 (1989)
Numerical investigation of the role of topological defects in the
three-dimensional Heisenberg transition.
M. Kamal, G. Murthy, Phys. Rev. Lett., 71,
1911 (1993)
New O(3) Transition in Three Dimensions.
O. I. Motrunich, A. Vishwanath, cond-mat/0311222 (2003)
Emergent Photons and New Transitions in the O(3) Sigma Model with Hedgehog Suppression.
-
Geometric phase associated with instantons for two-dimensional quantum
Heisenberg model.
(Christopher Winterowd)
F. D. M. Haldane, Phys. Rev. Lett., 61,
1029-1032 (1988).
O(3) Nonlinear Sigma-Model and the Topological
Distinction between Integer and Half-Integer-Spin
Antiferromagnets in 2 Dimensions.
S. Sachdev and N. Read, Int. J. Mod. Phys. B, 5,
219-249 (1991).
Large N Expansion for Frustrated and Doped
Quantum Antiferromagnets.
-
Topological order. Boundary states of spin chains (experiment).
(Sriram Ganeshan)
M. Hagiwara et. al., Physica B, 177, 386
(1992).
Magnetization process of an S=1 impure linear chain Heisenberg
antiferromagnet.