Homework 17

Reading
JJS 5.1-5.2.

Problem 1
For the particle in an infinite one-dimensional potential well of the width a ($0 < x < a$), find in the first order of perturbation theory the energy shifts under perturbation of the type:

a) $V(x) = \frac{V_0}{a}(a - |2x - a|)$;

b) $V(x) = V_0 \theta_{0<x<a-b}$.

State the conditions of applicability of obtained results.

Remark: The step function $\theta_{c<x<d}$ is equal to 1 for $c < x < d$ and 0 everywhere else.

Problem 2
Show that the energy shift $\Delta^{(1)}_n$ obtained in the first order of perturbation theory for the previous problem but for an arbitrary perturbation $V(x)$ does not depend on n for sufficiently large n.

Problem 3
Let us write down the Hamiltonian for a harmonic oscillator as

$$H = \frac{p^2}{2m} + \frac{kx^2}{2} + \frac{\alpha x^2}{2}.$$

Consider formally the last term $\alpha x^2/2$ as a perturbation. Using perturbation theory up (and including) to the second order calculate the shifts of energy levels. Compare the result with the exact answer. What is the condition for the convergence of perturbation series?

Problem 4
For the problem 1, take $V(x) = \alpha \delta(x-a/2)$ and find the shifts of energy levels up to (and including) the second order of perturbation series. State the conditions of applicability of the obtained result.

Problem 5
The plane rotator with the moment of inertia I and electric dipole moment d is placed in a uniform electric field E_0 lying in the plane of rotation. Considering the effect of the field as perturbation, find the polarizability of the ground state of a rotator. State the conditions of applicability of the obtained result.

Remark: the definition of the polarizability is $\alpha \equiv \partial |\langle d \rangle| / \partial E_0$.

Problem 6
Find approximate wave functions of the plane rotator in a uniform electric field (for the system from the previous problem). Do it in the first order in electric field of the perturbation theory.