Homework 19

Reading
JJS 5.6.

Problem 1
A particle is in the ground state of an infinite potential well of the width a at $t \to -\infty$. In addition it is in the weak uniform time-dependent potential of the form

$$V(x, t) = -xF_0 e^{-t^2/\tau^2}.$$

a) Calculate in the first order of perturbation theory the probabilities of exciting the particle to different states at $t \to +\infty$.

b) State the condition of applicability of the result.

Problem 2
A linear harmonic oscillator is in the n-th eigenstate at $t \to -\infty$. It is subjected to a uniform electric field of the form

$$E(t) = E_0 e^{-t^2/\tau^2}.$$

a) Calculate in the first order of perturbation theory the probabilities of exciting the particle to different states at $t \to +\infty$.

b) State the condition of applicability of the result.

Problem 3
In the previous problem find in the second order of perturbation theory the probabilities of transitions forbidden in the first order of perturbation theory. Compare probabilities $W(n \to n \pm 2)$ with $W(n \to n \pm 1)$.

Problem 4
A particle is in the ground state of the potential $U(x) = -\alpha \delta(x)$ for $t < 0$. A weak uniform field $V(x, t) = -xF_0 \sin \omega_0 t$ is applied to the system for $t > 0$. Find the probability $W_0(t)$ that the particle is still in the ground state at time t. Consider only the case $\hbar \omega_0 \gg |E_0|$, where E_0 is the bound state energy.

Hints: (i) For energies $E \gg |E_0|$ one can use the wave functions of free particle without potential as the effect of the potential on high energy states is small. (ii) First calculate w, the rate of exciting the particle from the ground state per unit time. (iii) Use Fermi’s Golden Rule.