
Physics 556: Solid State Physics II

3/1/2012. Due: Thursday, March 15, 2012 (in class).

Homework 3
Read: FW 6, 7, 8, 9

“FW” refers to Fetter, Walecka book.
Problems with stars are not for credit and will NOT be graded.

Exercise 1: Discontinuity of the momentum distribution

The momentum distribution of particles (say, with spin up) is

nk↑ = 〈ψ†k↑ψk↑〉 = −i
∫ +∞

−∞

dω

2π
G(k, ω)eiηω, (1)

where as usual the limit η → +0 is assumed.
Assume that the Green’s function of interacting fermions is given by

G(k, ω) =
a

ω − εk/h̄+ iγk sgn (k − kF )
+Greg(k, ω), (2)

where a is some number and γk > 0. Here Greg(k, ω) is the part of the Green’s function which is
less singular than the “leading” pole contribution.

Find the contribution of the pole part of (2) to the momentum distribution (1). Can you make
any conclusions about possible values of the constant a?

Exercise 2: The Hadamard lemma and fermionic bilinears

One of the most useful relations in quantum field theory is

eiSOe−iS = O + i[S,O] +
i2

2!
[S, [S,O]] +

i3

3!
[S, [S, [S,O]]] + . . . , (3)

where S and O are some operators.

a) Prove this relation expanding eiλSOe−iλS in Taylor series in λ at λ = 1.
Hint: the coefficient of the n-th order term of Taylor expansion of f(λ) is f (n)(1)/n!.

b) Suppose S = ψ†Aψ ≡ ψ†iAijψj is quadratic and O = (aψ) ≡ aiψi is linear in ψ and ψi
are canonic fermions {ψi, ψ†j} = δij . Summation over repeated indices is assumed. Calculate
(express in terms of the matrix A and vector a) the following expression

eiψ
†Aψ(aψ)e−iψ

†Aψ. (4)

Exercise 3: example of Wick’s theorem (FW 3.9)

Make the canonical transformation to particles and holes for fermions ckλ = θ(k−kF )akλ+θ(kF −
k)b†−kλ. By applying Wick’s theorem, prove the relation

c†1c
†
2c4c3 = N(c†1c

†
2c4c3) + θ(kF − k2)

[
δ24N(c†1c3)− δ23N(c†1c4)

]
+ θ(kF − k1)

[
δ13N(c†2c4)− δ14N(c†2c3)

]
+ θ(kF − k1)θ(kF − k2) [δ13δ24 − δ14δ23] ,
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where the normal-ordered products on the right hand side now refer to the new particle and hole
operators, and the subscripts indicate the quantum numbers (k, λ).

Exercise 4: Multiparticle expectation value

Consider the following expectation value

PN =

〈
N∏
j=1

ψjψ
†
j

〉
, (5)

where ψj is an annihilation operator of a one-dimensional spinless lattice fermion at the lattice site
labeled by an integer j. All operators in (5) are taken at the same time. Using the Wick’s theorem
express PN in terms of single particle averages Gij ≡ 〈ψiψ†j 〉. What is the physical meaning of
PN?

*Exercise 5: Fluctuations of the number of 1d fermions

For the gas of spinless one-dimensional fermions write down the operator of the number of particles
N̂L on the interval 0 < x < L in second quantization form. For large L� k−1

F obtain the formula

〈δN2
L〉 = 〈N2

L〉 − 〈NL〉2 =
1
π2

ln kFL. (6)

Exercise 6: Friedel oscillations

Consider a non-interacting Fermi gas in the presence of an impurity - a delta-functional potential
Uδ(3)(x). The Hamiltonian of the perturbation can be written as

Ĥ1(t) = Uψ†(0, t)ψ(0, t). (7)

Assume that U is small and calculate the density of fermions as a function of r the distance to
the impurity for r � k−1

F in the first order in U . Show that the density of fermions oscillates as a
function of r. What is the period of these oscillations?

Hint: Use the Green’s function in coordinate representation obtained in HW2, ex 8a.

Exercise 7: Ruderman-Kittel-Kasuya-Yosida (RKKY) oscillations

Consider a non-interacting electron gas in the presence of a localized spin ~S, interacting with the
local spin density of electrons. The interaction can be written as

Ĥ1(t) = J ~Sψ†α(0, t)~σαβψβ(0, t), (8)

where ~σ is a vector made of Pauli matrices and summation over spin indices α, β is assumed.
Assume that J is small and calculate the spin density of electrons as a function of r the distance
to the spin for r � k−1

F in the first order in J . Show that the spin density of electrons oscillates
as a function of r. What is the period of these oscillations?

Hint: see the previous problem

Exercise 8: Scattering amplitude in quantum mechanics

Consider a single particle in the presence of an external potential V (x). The Green’s function of
the particle satisfies the integral equation

G = G0 +G0V G, (9)
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with

G0(ε, p) =
1

ε− p2/2m+ iη
. (10)

Notice that for a single particle kF = 0 and the sign of the imaginary part in the denominator is
always positive (the function is analytic in the upper half plane).

It is convenient to introduce the scattering amplitude (t-matrix) so that

G = G0 +G0tG0, (11)

where multiplication here is understood as an operator multiplication.

a) Write down the integral equation for t-matrix in terms of G0 and V . Write all three forms
of the same equation: symbolic (similar to (9)), diagrammatic (denote t as a shaded box), and
explicit. For the latter one use notation tk,k′(ε) and G0(k, ε)δk,k′ . Notice that t is not diagonal in
momentum (depends on both k and k′) because of the absence of the translational invariance in
the presence of the potential V (x).

b) Evaluate the t-matrix for a delta-function potential V (x) = Uδ(d)(x) (d = 1, 2, 3, . . . is a dimen-
sion of space).

Hint: the t-matrix is momentum independent.

c) Show that in dimensions d ≤ 2, a bound-state forms for arbitrarily weak scattering potential.
Hint: bound state means the negative energy pole in the t matrix.
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