1. **Gravitational potential energy.** A rocket of mass \(m = 440. \text{kg} \) is launched from the surface of the earth. The earth’s radius is \(R = 6.37 \times 10^6 \text{m} \), the earth’s mass is \(M = 5.98 \times 10^{24} \text{kg} \), and Newton’s constant \(G = 6.67 \times 10^{-11} \text{Nm}^2/\text{kg}^2 \). When appropriate, you may use the approximate gravitational force per unit mass \(g = 9.8 \text{N/kg} \) (near earth’s surface).

 a. To 1% accuracy, how much work must be done (against gravity) to raise the rocket by \(h = 2.00 \text{km} = 2.00 \times 10^3 \text{m} \) above the earth’s surface?

 \[
 W = -W_{\text{grav}} = \Delta U_{\text{grav}} = mgh = (440 \times 10^3 \text{kg})(9.8 \text{m/s}^2)(2.00 \times 10^3 \text{m}) = 8.6 \times 10^9 \text{J}
 \]

 b. Explain in words why it takes less than 1000 times this work to raise the rocket to \(h' = 1000h \). If force were constant, work would be proportional to \(h \).

 However, the force of gravity diminishes as \(h \) increases, so work is less.

 c. How much work must be done against gravity to raise the rocket to \(h = 2.00 \times 10^6 \text{m} \) above the earth’s surface?

 \[
 W = \Delta U_{\text{grav}} = - \frac{GMm}{R+h} + \frac{GMm}{R} = mg\left(\frac{R^2}{R+h}\right) = 8.6 \times 10^9 \text{J} \times \frac{6.37}{8.37} = 6.6 \times 10^9 \text{J}
 \]

2. **Collision in one dimension.** A mass \(m_1 = 1.00 \text{kg} \) moves with velocity \(v_1 = +3.00 \text{m/s} \). Positive is to the right. It collides with a mass \(m_2 = 2.00 \text{kg} \), and rebounds with velocity \(v_1' = -1.00 \text{m/s} \).

 a. What is the velocity \(v_2' \) of \(m_2 \) after the collision?

 \[
 m_1v_1 = m_1v_1' + m_2v_2'
 \]

 \[
 \frac{m_2}{m_1} = 2; \quad v_2' = \frac{1}{2}(v_1 - v_1') = \frac{1}{2}(30 + 10) = 20 \text{m/s}
 \]

 b. How much work did \(m_2 \) do on \(m_1 \) during this collision?

 \[
 \text{Work} = \frac{\Delta \text{KE}_1}{2} = \frac{1}{2}m_1(v_1'^2 - v_1^2) = \frac{1}{2}(1.00 \text{kg})(20 \text{m/s})^2 = 200 \text{J}
 \]

 c. How much work did \(m_1 \) do on \(m_2 \) during this collision?

 \[
 \text{Work}_{12} = \frac{\Delta \text{KE}_2}{2} = \frac{1}{2}m_2(v_2'^2 - v_2^2) = \frac{1}{2}(2.00 \text{kg})(20 \text{m/s})^2 = 400 \text{J}
 \]

 d. How much total work was done during the collision?

 \[
 W_{\text{tot}} = 0 \quad \text{[The collision was elastic!]} \]

3. A block of mass \(m = 2.6 \text{kg} \) slides on level ground with coefficient of kinetic friction \(\mu = 0.35 \).

 a. How much work does friction do during \(x = 1.00 \text{m} \) of slide?

 \[
 W_f = -\mu mgx \quad \text{since } N = mg \text{ and } \theta = 180^\circ \quad W = -8.9 \text{J}
 \]

 b. How much initial velocity \(v_0 \) should the block have, if it is to slide \(x = 7.0 \text{m} \) before coming to rest?

 Friction does \(-7 \times 8.9 \text{J} = -62.4 \text{J} = \Delta \text{KE} = 0 - (\frac{1}{2}mV^2)\). \[
 \frac{1}{2}mV^2 = 62.4 \text{J} \quad \text{so } V = 6.9 \text{m/s}
 \]