1. In the figure, the box has mass \(m = 12 \) kg, the pushing force \(P = 58 \) N, and the angle \(\theta = 27^\circ \). Answer the following two questions.

 a. Draw the "free body diagram." This should show the "forces and nothing but the forces" acting on the mass \(m \). There is a frictional force, whose magnitude can be called \(f \), acting between the mass and the rigid floor.

 \[
 \begin{align*}
 \vec{F}_{\text{friction}} &= f \cos \theta - P \\
 \vec{F}_{\text{normal}} &= N - P \sin \theta
 \end{align*}
 \]

 \[
 f = \mu N = \mu (12 \text{ kg})(9.8 \text{ m/s}^2) \sin 27^\circ = 144 \text{ N}
 \]

 b. If there is no friction \((f=0) \), what is the acceleration \(a \) (magnitude and direction)?

 \[
 m a_x = F_{\text{net},x} = P \cos \theta = 58 \text{ N} \cos 27^\circ = 51.7 \text{ N}
 \]

 \[
 a_x = \frac{51.7 \text{ N}}{12 \text{ kg}} = 4.3 \text{ m/s}^2 \quad \text{to the right}
 \]

 c. What is the "normal force" (magnitude and direction)?

 \[
 F_{\text{net},y} = 0 = N - mg - P \sin \theta
 \]

 \[
 N = mg \cos \theta = (12 \text{ kg})(9.8 \text{ m/s}^2) \cos 27^\circ = 105 \text{ N}
 \]

 d. If the coefficient of kinetic friction is \(\mu = 0.20 \), what is the acceleration?

 \[
 m a_x = F_{\text{net},x} = P \cos \theta - \mu N = 51.7 \text{ N} - (0.20)(144 \text{ N}) = 22.9 \text{ N}
 \]

 \[
 a_x = \frac{22.9 \text{ N}}{12 \text{ kg}} = 1.9 \text{ m/s}^2 \quad \text{to the right}
 \]

2. A box of mass \(m=12\) kg is sliding downward on a rough surface inclined by \(\theta = 27^\circ \) to the horizontal.

 a. Draw the free body diagram (note – you do not know yet whether the acceleration is positive, negative, or zero. That's OK because acceleration "does not belong" on the free body diagram.)

 \[
 \begin{align*}
 \vec{F}_{\text{friction}} &= \mu N \cos \theta - \mu mg \sin 27^\circ \\
 \vec{F}_{\text{normal}} &= N - mg \cos \theta
 \end{align*}
 \]

 b. What is the normal force (magnitude and direction)? Since \(a_1 = 0 \), \(F_{\text{net}} = 0 \)

 \[
 0 = N - mg \cos \theta \implies N = mg \cos \theta = (12 \text{ kg})(9.8 \text{ m/s}^2) \cos 27^\circ = 105 \text{ N}
 \]

 c. Suppose the coefficient of kinetic friction is \(\mu = 0.20 \). What is the acceleration (magnitude and direction)?

 \[
 \begin{align*}
 ma_1 &= \frac{mg \sin \theta - \mu mg \cos \theta}{m} \\
 a_1 &= (9.8 \text{ m/s}^2)(0.20)\cos 27^\circ = 2.7 \text{ m/s}^2 \quad \text{down the slope}
 \end{align*}
 \]

 d. Suppose the coefficient of kinetic friction is \(\mu = 0.60 \). What is the acceleration (magnitude and direction)?

 \[
 \begin{align*}
 a_2 &= (9.8 \text{ m/s}^2)(0.60)\cos 27^\circ = 4.3 \text{ m/s}^2 \quad \text{up the slope}
 \end{align*}
 \]

 e. If the initial velocity is \(2.5 \text{ m/s} \) down the plane, how long does the motion last (in case d)?

 \[
 v_f = 0 = v_i + at \\
 0 = 2.5 \text{ m/s} - (0.79 \text{ m/s}^2) \cdot t = 0 \\
 t = \frac{2.5 \text{ m/s}}{0.79 \text{ m/s}^2} = 3.2 \text{ s}
 \]

 f. How far does the mass go (in case e)?

 \[
 \begin{align*}
 d &= \frac{v_i + v_f}{2} \cdot t \\
 &= \frac{2.5 \text{ m/s}}{2} \cdot 3.2 \text{ s} = 4.0 \text{ m}
 \end{align*}
 \]

 * Note Even though ("magnitude + direction") is not